Эта часть работы выложена в ознакомительных целях. Если вы хотите получить работу полностью, то приобретите ее воспользовавшись формой заказа на странице с готовой работой:

https://studservis.ru/gotovye-raboty/kontrolnaya-rabota/314785

Тип работы: Контрольная работа

Предмет: Экономико-математическое моделирование

- 1. Графический метод решения задач линейного программирования 3
- 2. Симплекс-метод решения задачи линейного программирования 8
- 2.1 Решение задачи без использования ЭВМ 8
- 2.2 Решение задачи в Microsoft Excel 12
- 3. Транспортная задача линейного программирования 17
- 3.1 Метод северо-западного угла 17
- 3.2 Метод минимального элемента 19

Список использованной литературы 23

1. Графический метод решения задач линейного программирования

1) $L(X)=x_1+[6x]_2\rightarrow max$

 $\{ \blacksquare (x_1 + [2x_1 2 \le 10@3x_1 - [3x_1 2 \ge 6@\blacksquare([2x_1 1 + [3x_1 2 \le 6@\blacksquare(3x_1 + x_2 \ge 4@x_1, x_2 \ge 0))) \} \} \}$

Шаг 1. Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (рисунок 1).

Рисунок 1 - Область допустимых решений

Шаг 2. Границы области допустимых решений. Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи. Обозначим границы области многоугольника решений (рисунок 2).

Рисунок 2 - Границы области допустимых решений

Шаг 3. Рассмотрим целевую функцию задачи $L=x_1+\|6x\|_2\to max$. Построим прямую, отвечающую значению функции $L=x_1+\|6x\|_2=0$. Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление максимизации L(X). Начало вектора – точка (0;0), конец – точка (1;6). Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией (рисунок 3).

- 1. Математические методы [Текст] : учеб. для студентов учреждений сред. проф. образования : учеб. для студентов вузов, обучающихся по спец. 080801 "Прикладная информатика (по областям)" : рек. Учеб.-метод. об-нием / Т. Л. Партыка, И. И. Попов. 2-е изд., испр. и доп. М. : ФОРУМ : ИНФРА-М, 2015. 463 с.
- 2. Математическое моделирование систем и процессов [Текст] : учеб. пособие для вузов : рек. УМО / Н. В. Голубева. СПб. : Лань, 2013. 191 с.
- 3. Толковый словарь терминов по математическому моделированию [Электронный ресурс] / Иркут. гос. с.-х. акад.; авт.-сост.: В. Р. Елохин, Я. М. Иваньо, Н. И. Федурина. Электрон. текстовые дан. Иркутск : ИрГСХА, 2011.
- 4. Васин, Александр Алексеевич. Исследование операций [Текст] : учеб. пособие для вузов / А. А. Васин, П. С. Краснощеков, В. В. Морозов. М. : Академия, 2008. 464 с. XP(2)
- 5. Голышева, Светлана Павловна. Исследование операций [Текст] : учеб.-метод. пособие для студентов II курса энергет. фак. очн. и заочн. формы обучения / С. П. Голышева ; Иркут. гос. с.-х. акад., каф. математики. Иркутск : ИрГСХА, 2006. 86 с.
- 6. Давыдов, Евгений Георгиевич. Элементы исследования операций [Текст] : учеб. пособие для вузов : допущено Учеб.-метод. об-нием / Е. Г. Давыдов. М. : КноРус, 2010. 158 с.

- 7. Исследование операций в экономике [Текст] : учеб. пособие для вузов / Н. Ш. Кремер [и др.] ; под ред. Н. Ш. Кремера. 2-е изд., перераб. и доп. М. : Юрайт, 2010. 430 с. XP(2)
- 8. Таха, Хемди А. Введение в исследование операций [Текст] : пер. с англ. / Х. А. Таха. 7-е изд. М. : Вильямс, 2005. 901 с. + 1 эл. опт. диск (CD-ROM)

Эта часть работы выложена в ознакомительных целях. Если вы хотите получить работу полностью, то приобретите ее воспользовавшись формой заказа на странице с готовой работой:

https://studservis.ru/gotovye-raboty/kontrolnaya-rabota/314785