Эта часть работы выложена в ознакомительных целях. Если вы хотите получить работу полностью, то приобретите ее воспользовавшись формой заказа на странице с готовой работой:

https://studservis.ru/gotovye-raboty/kursovaya-rabota/96685

Тип работы: Курсовая работа

Предмет: Математический анализ

1. Введение	3
2. Плоская задача метода конечных элементов	5
3. Антиплоская задача МКЭ для плоских скалярных полей	17
4. Комплексная задача МКЭ для плоских скалярных полей	25
5. Комплексная задача МКЭ для произвольных скалярных полей	27
6. Заключение	
7. Литература36	

1. Введение

В последние десятилетия в математике вопросам численного дифференци-рования уде-ляет-ся особенно пристальное внимание. Это объясняется тем обстоятель-ством, что большинство актуальных инженернотехнических задач, подлежащих ре-шению на разных уровнях проектирования, которые описываются системами нели-нейных интегро-дифференциальных уравнений, не могут быть решены посредством существующего аналитического аппарата. А это означает, что решение требуемых за-дач оказывается возможным лишь на основе приближенных, или, как их чаще при-нято сейчас называть, численных методов математики.

Первоначально, объектом исследования вычислительной математики были разностные схемы, с помощью которых в том или ином приближении осуществля¬лось решение любого порядка дифференциальных уравнений. В первую очередь речь идет о конечных и разделенных разностях [1, 2], которые с успехом применялись в качестве т.н. метода сеток в решении многих задач математической физики [3, 4] и теории упругости [5]. Впрочем, не следует забывать, что при моделировании дву¬мер¬ных скалярных полей разностными схемами допускалась гораздо большая ошибка, чем при приближении теми же схемами одномерных одноименных полей.

Во второй половине XX века был разработан метод конечных элементов применительно к решению плоской задачи теории упругости [6]. Эта модификация позволила многим успешнее решать плоские задачи теории упругости, чем метод сеток, который с этим нововведением обнаружил всю свою несостоятельность в свя¬зи с исследованием двумерных скалярных полей [6, 7]. В дальнейшем были сфор¬му¬ли¬ро¬ваны пространственная и осесимметричная задачи метода конечных элемен¬тов [6, 7], однако этих модификаций не было достаточно для того, чтобы утверждать о том, что развитый метод конечных элементов суть естественное обобщение метода конечных (разделен¬ных) разностей на пространства бо́льших размерностей.

После появления на свет публикации [8], в которой была сформулирована и решена методом конечных элементов антиплоская задача теории упругости, ока¬за¬лось вполне очевидным, что весь арсенал сформированного метода конечных эле¬ментов представляет собой естественное обобщение метода разделенных разнос¬тей. Более того, решение плоской и антиплоской задач теории упругости на основе МКЭ дало возможность численно решать практически любые задачи двумерных скаляр¬ных полей на плоскости. Эти две задачи образуют в совокупности применительно к изгибу тонких гибких пластин комплексную задачу МКЭ [9]. Из этого следует, что антиплоская задача МКЭ вытекает из комплексной задачи МКЭ как частный случай, адаптированный для случая изгиба тонких жестких пластин [9]. Теперь выясняется, что для полноценного численного дифференцирования дифференциальных уравнений, описывающих задачи двумерных скалярных полей, недостает только инструмента для исследо¬ва¬ния напряженно-деформированного со¬стояния произвольной конфигурации двумерных скалярных полей. Эта модифика¬ция предложена в публикации [10], где приводится распростране¬ние вышеуказанной ан¬типлоской задачи МКЭ на случай тонких жестких и гибких оболочек.

Таким образом, мы имеем в порядке возрастающей конкретности три вло¬жен¬ных в известном смысле задач, подлежащих детальному освещению:

- плоская задача метода конечных элементов;
- антиплоская задача МКЭ для плоских скалярных полей;
- комплексная задача МКЭ для плоских скалярных полей;
- комплексная задача МКЭ для произвольных скалярных полей.

2. Плоская задача метода конечных элементов

В обеих задачах теории упругости - о плоском на¬пря¬жённом и плоском деформированном состояниях [6] - поле перемещений од¬но¬значно определяется перемеще¬ния¬ми и и v в направлениях осей x и у прямоугольной сис¬те¬мы координат. В обоих случаях рассмат¬ри¬вают¬ся только по три компоненты напряжения и деформации в плос¬кос¬ти хОу. В случае плоского напряжённого состояния все ос¬таль¬ные компоненты напряжения равны нулю, а в случае плоского деформи¬ро¬ванного состояния напряжение в на¬прав¬лении, перпендикулярном плос¬кости хОу, не равно нулю, и может быть определено при необ¬хо¬ди¬мости через зна¬чения главных компонент напряжения [6]. Рассмотрим тонкую пластину, находящуюся в усло¬в謬ях об¬об¬щённого плос¬кого напряжённого состояния [6]. Пластина мыслен¬но разбивается на треугольные конеч¬ные элементы, после чего выде¬ляется один из них с узлами l,m,n [1] (рис. 1).

Перемещения каждого узла конечного элемента lmn, напри¬мер I, имеют две компоненты:

(2.1)

откуда следует, что вектор узловых перемещений эле¬мен¬та опреде¬ляет¬ся следующим шестимерным вектор-столб¬цом [6]:

(2.2)

Рис. 1. Формирование функций форм в пределах конечного элемента

Пусть перемещения произвольной точки внут ри эле мента однознач но определяются через узловые пере ме чере ния сле дую щим образом [2]:

(2.3)

где элементы прямоугольной матрицы размерности яв¬ляют¬ся функциями координат рассматрива¬е¬мой точки. Эти функ¬ции должны быть выбраны так, что¬бы при подстановке координат уз¬лов элемента в зависимость (2.3) они обра¬ща¬лись бы в соот¬вет¬ст¬вую¬щие узловые пере¬ме¬щения.

Для рассматриваемой плоской задачи МКЭ пере¬ме¬ще¬ния при¬ни-маются линейными относительно [2]:

(2.4)

где коэффициенты и сохраняют постоянные значе¬ния в пре¬де¬лах каждого конечного элемента. Выбранные таким образом функции перемещений га¬ран¬ти¬руют непрерыв¬ность перемещений между смежными элементами: в са¬мом деле, поскольку вдоль лю¬бой сто¬ро¬ны треугольника они из¬ме¬няют¬ся линейно, то из равенства перемеще¬ний в узлах следует их ра¬вен¬ство и по всей гра¬ни¬це элемента.

В результате подстановки в функции перемещений (2.4) вмес¬то коорди¬нат узлов элемента (рис. 6) образуются две системы линейных уравнений:

(2.5)

Постоянные коэффициенты системы уравнений (2.5) мо¬гут быть оп¬ре¬делены, напри¬мер, по правилу Крамера:

где – площадь треугольника ijk на рис. 6, т.е.
(2.7)
Подставляем значения коэффициентов, выража¬емые ра¬вен¬ст¬вами (2.6), в за¬ви¬симости (2.4); полученные фор¬му¬лы [6] для ком¬по¬нент перемещения произ-вольной точки кнеч¬но¬го элемента будем на¬зы¬вать функциями перемеще¬ний [6]:
(2.8)
где
(2.9)
а остальные коэффициенты находятся путём круговой пе¬ре¬становки индексов , т.е.
Зависимость (2.8) можно также представить в мат¬рич¬ной форме [2]:
(2.10)
где
(2.11)
причём интерполяционные функции в (2.10) час¬то назы¬вают¬ся функциями формы [6]. Функциям формы можно дать любопытное геометри¬ческое истолкование. Нетрудно удостовериться, что для функ¬ции , напри¬мер, справедливо следующее представ¬л嬬ние [6] (рис. 1):
(2.12)
откуда следует, что функция формы принимает значе¬ние 1 в узле I и обращается в нули в узлах m и n . Свой¬ст¬вами, аналогичными (2.12), обладают также функции фор¬мы и ; как видно из рис. 1 , они связаны между со¬бой очевидным тождеством:
(2.13)
Полную деформацию в любой точке внутри элемента можно охарактери¬зовать тремя составляющими, которые оп¬ределяются на ос¬новании дифференциаль¬ных зависи¬мос¬тей Коши [6]:
(2.14)
В силу определённости сформулированных равенств (2.10) и (2.14) будем иметь [6]:
(2.15)
где
(2.16)
При принатых выражениях (2.10) пля функций пере-ме-шений, как и сле-повало ожилать матрица

(2.6)

уста¬нов¬ленная равенством (2.15) с учётом (2.16), не зависит от координат точек внутри конеч¬но¬го элемента, т.е. дефор¬ма¬ции в его точках по¬стоянны [6].

Компоненты напряжения, как известно, связаны с ком¬понен¬тами деформа¬ции посредством закона Гука; эта зависимость запи¬сы¬вает¬ся в матричном виде для плоской задачи следующим образом:

(2.17)

В формуле (2.17) – матрица упругих постоянных ма¬те¬риала, кото¬рая в случае однородного и изотропного тела формулируется [6]:

(2.18)

Для задачи плоской деформации матрица упругих пос-тоян-ных (2.18) принимает вид [6]:

(2.19)

В случае обобщённого плоского напряжённого со-сто-яния будем иметь [6]:

(2.20)

Что касается вектора в зависимости (2.17), то он выра¬жает т.н. началь¬ную деформацию, т.е. деформацию, не зависящую от на¬пряжений. Чаще всего на практике к на¬чальным деформациям при¬во¬дят колебания темпе¬ра¬ту¬ры: тогда под на¬чальной деформацией бу¬дет по¬ни¬маться тем¬пературная деформация. В случае плоского на¬пря¬¬жён¬ного состояния изотропного материала для на¬гре¬того до тем¬пе¬ратуры Т элемента при коэффициенте ли¬ней¬ного рас-ширения бу¬дем иметь:

(2.21)

В случае плоского деформированного состояния в изо¬троп¬ном ма¬те¬риа¬ле величина температурной деформации за¬висит от упругих по¬стоян¬ных, т.е.

(2.22)

При отсутствии начальной деформации, т.е. при , за¬ви¬симость (2.17) принимает вид

(2.23)

Путём исключения из равенства (2.23) с помощью соотно-ше-ния (2.15) вектор-столбца находим:

(2.24)

где – матрица, которую называют матрицей напря¬же¬ний плоской задачи [6]. Итак, напряжённо-деформированное состояние конечного элемен¬та I,m,n (рис. 1), описываемое зависимостями (2.15) и (2.17), рас¬смат¬ри¬вается в МКЭ как результат действия узловых сил, которые дол¬жны быть статически экви¬ва¬лент¬ны на¬пряжениям на границе ко¬неч¬ного эле¬мен¬та.

Литература

- 1. Демидович Б.П., Марон И.А. Основы вычисли тель тной матетматитки. М.: Наука, 1970.
- 2. Бахвалов Н.С. Численные методы. М.: Наука, 1975.
- 3. Тихонов А.Н., Самарский А.А. Уравнения мате¬ма¬ти¬ческой физики. М.: Наука, 1972.
- 4. Бабаков И.М. Теория колебаний. М.: Наука, 1968.
- 5. Демидов С.П., Теория упругости. Москва, 1979.

- 6. Зенкевич О., Метод конечных элементов в тех¬нике. Москва, 1975.
- 7. Bathe K.J. and Wilson E.L. Numerical methods in finite element analysis. Prentice-Hall, 1976.
- 8. Геворкян Г.А. Плоско-пространственная задача метода ко¬неч¬ных элементов // Механика машин, механизмов и материа¬лов. 2014, № 1 (26). С. 49 52.
- 9. Геворкян Г.А. Расчет упругих прогибов тонких жестких пластин на основе метода конечных элементов без использования гипотезы Кирхгофа // Меха¬ника машин, механизмов и материа¬лов. 2017, № 1 (38). С. 39 44.
- 10. Геворкян Г.А. Расчет прогибов тонких жестких оболочек на основе метода конечных элементов без использования гипотезы Кирхгофа // Меха¬ника машин, механизмов и материа¬лов. 2018, № 2 (43). С. 83 89.

Эта часть работы выложена в ознакомительных целях. Если вы хотите получить работу полностью, то приобретите ее воспользовавшись формой заказа на странице с готовой работой:

https://studservis.ru/gotovye-raboty/kursovaya-rabota/96685