Фрагмент для ознакомления
2
особенности технологических и эксплуатационных свойств пластмасс?
Пластическими массами (пластмассами) называют материалы на основе природных или синтетических высокомолекулярных соединений, из которых получают изделия методами пластической деформации путем нагревания и давления. Они сохраняют свою форму после охлаждения и отверждения.
В состав пластмасс входят:
• основа — полимерное связующее (смолы);
• наполнители;
• катализаторы;
• пластификаторы;
• стабилизаторы;
• красители и другие добавки.
На рис. 1 представлена классификация пластмасс.
Термопласты производят на основе термореактивных смол — полиэфиров: фенолформальдегидных, аминоальгидных, эпоксидных, полиамидных, кремнийорганических, ненасыщенных. Пластмассы на основе этих смол отличаются повышенной прочностью, не склонны к ползучести и способны работать при повышенных температурах. Термопласты обычно изготовляют без наполнителя. Из большой группы таких пластмасс основными являются: полиэтилен, поливинилхлорид, полиамиды (нейлон, капрон), полистирол, органическое стекло, фторопласт-4. Из термопластов изготовляют литьевые, пленочные и листовые изделия, которые обладают хорошими электроизоляционными свойства-Реактопласты характеризуются отсутствием хладотекучести, большой теплостойкостью и нерастворимостью в обычных растворителях. Основу реактопластов составляют смолы: фенолформальдегидная, эпоксидная, кремнийорганическая и др.
В зависимости от формы частиц наполнителя реактопласты можно разделить на следующие группы: порошковые, волокнистые и слоистые. В качестве порошковых наполнителей применяют древесную муку, молотый кварц, слюду, асбест и др. Порошковые пластмассы применяют для несиловых конструкционных и электроизоляционных деталей.
К пластмассам с волокнистыми наполнителями относятся волокиты, асбоволокниты, стекловолокниты. Волокиты применяют для изготовления деталей общего технического назначения (рукояток, фланцев, шкивов и др.), асбоволокниты используют в качестве материала тормозных устройств, стекловолокниты — для изготовления силовых электротехнических деталей, деталей машиностроения.
Слоистые пластмассы являются силовыми конструкционными и поделочными материалами. К ним относятся гетинакс, текстолит, древеснослоистые пластики (ДСП), асботекстолит, стеклопластики. Гетинакс используют в качестве прокладок или плат для приборов электрооборудования, внутренней облицовки пассажирских кабин самолетов, железнодорожных вагонов, кают судов, в строительстве. Текстолит как конструкционный материал применяют для зубчатых колес газораспределительного вала.
Древеснослоистые пластики имеют высокие физико-механические свойства, низкий коэффициент трения. Они с успехом заменяют текстолит и цветные сплавы. ДСП применяют при изготовлении внутренних панелей автобусов, сидений автомобилей.
Асботекстолит является одновременно конструкционным, фрикционным и термоизоляционным материалом. Из него изготавливают фрикционные диски, тормозные колодки, лопатки ротационных бензонасосов.
Промышленность выпускает большое число марок стеклопластиков для различного применения с разными наполнителями (стеклоткань или стеклянный шпон) и связующими. Они отличаются большим разнообразием свойств, однако все обладают высокой прочностью, низкой плотностью, высокими электро-, тепло- и звукоизоляционными свойствами, химической стойкостью. Их применяют в качестве несущих деталей летательных аппаратов, для изготовления автоцистерн, железнодорожных вагонов, корпусов лодок и др.
К газонаполненным пластмассам относятся пенопласты, поропласты и сотопласты. Они отличаются чрезвычайно низкой плотностью и высокими теплозвукоизоляционными свойствами.
Газонаполненные пластмассы используют как амортизационный материал в сидениях автомобилей, а также в качестве теплоизоляционных материалов, например в цельнометаллических рефрижераторных полуприцепах, для звукоизоляции кабин тракторов, экскаваторов и других машин.
2. Опишите назначение модифицирующих добавок, входящих в состав пластмасс.
Компоненты, входящие в состав пластмасс
В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы.
Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, для повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. Наполнители бывают органические и неорганические. Органическими наполнителями являются древесная мука, хлопковые очесы, целлюлоза, бумага, хлопчатобумажная ткань, древесный шпон. В качестве неорганических наполнителей используют: асбест, графит, стекловолокно, стеклоткань, слюду, кварц.
Используя как наполнитель древесную муку, получают порошкообразные полимерные материалы – пресспорошки, употребляемые для изготовления не сильно нагруженных деталей. Для получения материала с более высокой механической прочностью употребляют волокнистые наполнители (волокна хлопка, асбеста). Еще большую прочность пластмассам придают листовые наполнители. Их применяют для получения слоистых пластмасс: при применении хлопчатобумажной ткани: текстолит, стеклоткани – стеклотекстолит и т.д. При применение древесного шпона вырабатывают древесные слоистые пластики. Для изготовления деталей, по прочности не уступающих сталям, в качестве наполнителей используют стекловолокно, стеклошнуры, стекловаты.
По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Исключение составляют теплоизоляционные материалы, где в качестве наполнителя используют газы, получая газонаполненные полимерные материалы – пенопласты и поропласты.
Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификатора применяют дибутилфталат, трикре-зилфосфат и др.
Стабилизаторы – вещества предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности повышенных температур и других факторов.
Красители добавляют для окрашивания пластических масс применяют как минеральные красители, так и органические.
Смазочными веществами (стеарином, олеиновой кислой, трансформаторным маслом) снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.
3. Охарактеризуйте особенности термопластичных полимеров и материалов на их основе.
Наука различает два вида полимеров – натуральные и синтетические. Синтетические полимеры получаются путем очистки, модификации, температурной обработки и разбавления натурального полимера. По отношению к нагреву полимеры могут быть термопластичными и термореактивными. Термопластичные полимеры становятся мягкими при нагревании, и вновь затвердевают при снижении температуры.
Термопластичные полимеры
Полимер – длинная цепочка макромолекул, которые выстроены в одинаковые множественно повторяющиеся звенья. Эти звенья называют мономерами, они соединены в цепочку ковалентными химическими связями.
Полимеры отличаются большим количеством звеньев – от сотен до десятков тысяч. По своей молекулярной структуре полимеры делятся на:
• линейные;
• сетчатые;
• разветвленные;
• пространственные.
Линейные полимеры могут быть также и термопластичными. Это обусловлено их физическими свойствами по изменению структуры, пластичности при воздействии на них повышенных температур. Линейный полимер считаются более мягким и менее прочным чем разветвленный вид.
Термопластичные полимеры способны при нагревании становиться мягкими, а при охлаждении возвращаться в исходное состояние. Химические связи между молекулами не разрушаются, поэтому при многочисленном нагреве продукт не теряет своих свойств.
Свойства и применение
Термопластичными называют полимеры, которые при нагревании переходят из твердого состояния в мягкое, тягучее, а при охлаждении снова принимают твердую форму. Данные элементы получают реакцией полимеризации. Эта реакция проходит под большим давлением и без применения примесей. Реакция полимеризации стала возможна только благодаря современной химии и специализированной аппаратуре. Получить данный процесс в естественных условиях невозможно.
Свойства термопластичных полимеров вызваны способом соединения мономеров – соединение осуществляется в одном месте, в одном направлении. Другими словами, молекулы соединены между собой в линию при линейном виде, и в виде нескольких линий, сплетенных в паутину, при разветвленной структуре.
При нагревании эти связи слабеют, и полимер размягчается. Такая простота обработки обуславливает широкое применение материалу при производстве формовочных деталей и других сложных изделий.
Термопластичные полимеры хорошо плавятся, а также растворяются в реагентах и растворителях. При испарении растворителя материал твердеет и приобретает прежние свойства. Это качество применяется при производстве различных клеев, лаков, красок, герметиков, замазок и других строительных растворов, имеющих в своем составе полимеры.
Из термопластичных полимеров выделяют:
• полиолефины;
• полиамиды;
• поливинилхлориды;
• фторопласты;
• полиуретаны;
• поликарбонаты;
• полиметилметакрилаты;
• полистирол.
На основании полимеров, исходных веществ и способов обработки выделяют следующие окончательные продуты: пластмассы; волокниты; пленки; покрытия; слоистые пластики; клеи.
Самое широкое применение термопластичные полимеры получили в строительстве при изготовлении материалов для изоляции, органических стекол, пленок и покрытий различной плотности и толщины, тонких волокон, а также в качестве связующих основ для клеев, штукатурок и теплоизоляционных материалов.
Из полимеров изготавливают бутылки и различные по форме сосуды, тару, трубы, детали машин оргтехники, компьютеров и электронного оборудования. А также используют при производстве напольного покрытия — линолеума, плитки, плинтусов, отделочных декоративных пленок, настенных панелей и пластика.
4. Опишите способы получения, свойства и области применения полиэтилена.
Одним из наиболее распространённых в быту видов пластика является полиэтилен.
Современный человек встречает его буквально на каждом шагу: в него упаковывают продукты и непродуктовые товары, из него делают бутылки для воды и напитков, одноразовую посуду и множество других вещей.
Но что мы знаем о полиэтилене? Что такое полиэтилен? Как понятно из названия, полиэтилен – это полимер, т.е. вещество с длинной молекулой, образованной соединением ряда мономерных молекул. Мономеры могут соединяться в виде цепочек, сеток, образовывать формации неправильной формы. От того, при каких условиях происходит полимеризация, т.е. образование этих длинных молекул, зависят свойства получаемого полимера.
Основой для полиэтилена служит бесцветный газ этилен, который получают, перерабатывая определённые нефтепродукты – прямогонный бензин, газойль и др. Вещество, получаемое в ходе полимеризации, обладает хорошей термопластичностью, химической стойкостью, устойчивостью к ударным нагрузкам. Полиэтилен является диэлектриком, т.е. не проводит электроток. Это твёрдое беловатое вещество, обладающее прозрачностью при раскатывании тонким слоем. Полиэтилен является одним из самых распространённых в мире полимеров. Способы изготовления полиэтилена В настоящее время существует три основных вида полиэтилена, которые различаются по способу переработки этилена: — при высоком давлении получают полиэтилен небольшой плотности, который обозначается аббревиатурой ПВД либо ПЭНП; — полученный при среднем давлении продукт обозначают как ПЭСД; — при низком давлении образуется полиэтилен высокой плотности, который обозначают аббревиатурами ПНД либо ПЭНД.
Прочие способы полимеризации этилена не приобрели достаточной популярности, так как они либо чересчур затратны, либо не обеспечивают нужных качеств полимера.
Кроме того, существует ряд технологий для получения композитных составов и сополимеров. Полиэтилен объединяют с полипропиленом, каучуком, полиизобутиленом и др. В последние десятилетия активно используется так называемый сшитый полиэтилен, полимерная молекула которого обрзована мономерами, соединёнными не только в виде цепи, но и боковыми связями, напоминающими стежки нити. Сшитый полиэтилен более прочен и долговечен, чем обычный. Его производят пероксидным, силановым, азотным и радиационным способами. Использование полиэтилена Сфер для применения столь полезного вещества, каким оказался полиэтилен, сегодня очень много. Его используют: — в виде плёнок различной толщины, вида и назначения, предназначенных для упаковки, ламинации, склейки и т.д.; — для изготовления тары и предметов обихода, от сельхозорудий и кухонных принадлежностей до детских игрушек; — для производства труб различного назначения; — в качестве электрической изоляции проводов и коммутационных элементов, для изготовления корпусов электроприборов и отдельных деталей; — в качестве термоклея в виде порошка или стержней; — в качестве теплоизолятора в виде вспененной массы, реализуемой листами или рулонами; — для изготовления корпусов и деталей различных механизмов, от мелкой бытовой техники до тракторов и лодок; — в медицине для изготовления инструментов, расходных материалов, заменителей хрящевой ткани и др. Для потребителей наиболее важными свойствами являются водонепроницаемость полиэтилена, его химическая стойкость, пластичность, небольшой вес и достаточно высокая прочность.
В последние десятилетия актуальность приобрела возможность повторного использования полиэтилена, благодаря чему экономятся невосполнимые природные ресурсы и не загрязняется окружающая среда.
5. Опишите способы получения, свойства и области применения полипропилена и полиизобутилена.
Производство полиизобутилена
Впервые полимеризацию изобутилена осуществил А. М. Бутлеров в 1873 г. Полимеры с молекулярной массой около 50 000 применяются в качестве добавок для загустевания смазочных масел, изготовления консистентных смазок и др.
Высокомолекулярный полиизобутилен получают полимеризацией по катионному механизму при низких температурах в присутствии трифторида бора.
В промышленности полиизобутилен получают полимеризацией изобутилена в растворе жидкого этилена при температуре —100 °С. При смешении с катализатором мгновенно происходит полимеризация изобутилена. Образующийся полимер имеет молекулярную массу 120 000—200 000. Выход полиизобутилена составляет около 100% (в пересчете на исходный изобутилен).
________________________________________
Свойства и применение полиизобутилена
Высокомолекулярный полиизобутилен обладает высокими химической стойкостью и водостойкостью. Он устойчив к действию кислот (в том числе к концентрированной азотной кислоте) и щелочей. По химической стойкости и диэлектрическим свойствам полиизобутилен уступает только полиэтилену и политетрафторэтилену.
Полиизобутилен характеризуется малой газопроницаемостью, высокими диэлектрическими показателями, но низкой прочностью и ползучестью.
Полиизобутилен применяется для внутренней и внешней защиты аппаратуры от коррозии, для обкладки металлических труб, железнодорожных цистерн и кислотохранилищ, как гидроизоляционный материал, для электроизоляции проводов и кабелей, как уплотнительный материал.
6. Опишите способы получения, свойства и области применения полистирола и сополимеров на его основе.
Твердый, жесткий, аморфный полимер. ПС хорошо окрашивается и обрабатывается механическими способами.
Основные физико-химические свойства полистирола
Полистирольные пластики представляют собой многочисленную группу термопластичных материалов, химический состав полимерной части которых содержит мономер стирол или продукты его сополимеризации. Широко используются полистирол общего назначения (ПС), вспенивающийся полистирол, ударопрочный полистирол (УПС) и АБС-сополимеры.
Полистирол имеет большое значение среди современных видов конструкционных пластмасс. Хотя в настоящее время удельный вес полистирола в объеме производства синтетических смол и пластмасс составляет менее 6%, но области применения этого вида полимера, обусловленные широким спектром физико-механических свойств, охватывают все сферы промышленности, начиная от производства товаров народного потребления и заканчивая автомобильной промышленностью и строительством.
По физическим свойствам полистирол представляет собой термопластичный полимер линейного строения. Аморфный, бесцветный, прозрачный, хрупкий продукт. Не токсичен. Для полистирола характерны легкость переработки, склеиваемость, хорошая окрашиваемость в массе и очень хорошие диэлектрические свойства.
Полистирол легко растворим в собственном мономере, ароматических углеводородах, сложных эфирах, ацетоне. Не растворяется в низших спиртах, алифатических углеводородах, фенолах, простых эфирах. Полимер обладает низким влагопоглощением, устойчив к радиоактивному излучению, к кислотам и щелочам, однако разрушается под действием концентрированной азотной кислоты и ледяной уксусной. На воздухе при УФ облучении полистирол подвергается старению: появляются желтизна и микротрещины, происходит помутнение, увеличивается хрупкость. Термодеструкция начинается при 200 °С и сопровождается выделением мономера. Недостатки полистирола – его хрупкость и низкая теплостойкость. Невелико сопротивление ударным нагрузкам. При температурах выше 60°С снижается формоустойчивость.
Для получения материалов, обладающих более высокой теплостойкостью и ударной прочностью, чем полистирол, используют его смеси с другими полимерами и сополимеры стирола. Наибольшее промышленное значение имеют блок- и привитые сополимеры, а также статистические сополимеры стирола с акрилонитрилом, акрилатами и метакрилатами, α-метилстиролом и малеиновым ангидридом.
ПС обладает средней газопроницаемостью (выше, чем у ПП, но ниже, чем у ПЭНП), но высокой паропроницаемостью. Паропропускание быстро понижается при отрицательных температурах, что позволяет использовать ПС для упаковки продуктов при низких температурах.
ПС имеет отличные электрофизические свойства – низкие диэлектрические потери, высокую электрическую прочность, высокое объемное сопротивление. Химически он стоек к сильным кислотам и щелочам, нерастворим в углеводородах алифатического ряда и слабых спиртах; растворим в ароматических углеводородах, высших спиртах, сложных эфирах и хлорированных углеводородах. Из ориентированной ПС пленки можно получать термоформованием очень сложные изделия.
Основные группы полистирольных пластиков / Styrene polymers
По химическому строению полистирольные пластики делятся на четыре основные группы:
1. гомополистирол (или полистирол общего назначения – ПСМ, ПСС), вспенивающийся полистирол (ПСВ, ПСВ-С);
2. статистические сополимеры стирола, например, двойные сополимеры стирола с метилметакрилатом (МС), акрилонитрилом (САН) и др., тройной сополимер – стирол-метилметакрилат-акрилонитрил (МСН);
3. привитые сополимеры стирола, к которым относятся ударопрочный полистирол, АБС-сополимеры, сополимер МСП;
4. полимерные композиты (полимер - полимерные смеси), например, АБС-ПВХ, АБС–ПК, ударопрочный полистирол – полифениленоксид, стеклонаполненные АБС и САН, трудногорючие марки ударопрочного полистирола и АБС.
Применение полистирола в упаковке
Двухосноориентированная пленка обладает прекрасной прозрачностью. Температура размягчения составляет 90-95°С. Ориентированный полистирол имеет среднюю газопроницаемость (выше чем у ПП, но ниже, чем у ПЭНП), но высокую паропроницаемость. Паропроницаемость быстро понижается при температурах ниже 0°С, что позволяет использовать ПС для упаковки продуктов при низких температурах. Из ориентированной ПС пленки методом термоформования получать изделия сложной конфигурации.
Ориентированный ПС толщиной менее 75 мкм используют для "окошек" в картонных упаковочных коробках. Более толстые пленки используются для получения стаканчиков для торговых автоматов, подносов для фасованного свежего мяса, с тем, чтобы видеть при покупке обе стороны упаковываемого продукта.
Ударопрочный полистирол (УПС) представляет собой блоксополимер стирола с каучуком. В немодифицированном состоянии ПС - хрупкий материал, и его удельная ударная вязкость недостаточна для многих применений.
Ударопрочный ПС более гибок, имеет большую ударную прочность, но меньшую прочность при растяжении и термическую стойкость, чем немодифицированный ПС. Химические свойства немодифицированного ПС одинаковы со свойствами. Ударопрочный ПС - превосходный материал для получения различных изделий методом термоформования. Введение в ПС синтетических каучуков, уменьшая хрупкость, снижает прозрачность ПС.
Вспененный полистирол обладает высокой жиростойкостью, является прекрасным теплоиэолятором. Применяется для изготовления различных упаковочных изделий методом термоформования (прокладки в ящики для яблок, коробочки для фасовки яиц, подносы и лотки для расфасовки свежего мяса, рыбы, чипсов и т.д.).
Сополимеры стирола с акрилонитрилом (САН) имеют более высокую химическую стойкость по сравнению с базовым полимером ПС.
АБС-пластик - сополимер стирола, бутадиена, акрилонитрила. Его свойства варьируются в широких пределах в зависимости от состава композиции и метода производства. АБС пластик имеет более высокую ударную вязкость, химическую стойкость и пластичность, чем УПС. Применяется в виде банок и подносов.
7. Опишите способы получения, свойства и области применения фторсодержащих полимеров.
Фторопласт - это углеводород полимерной структуры который может содержать в своем составе от 1 до 4 атомов фтора.
Технические характеристики фторопласта определяются их количеством, наличием дополнительных галогенов, а также пространственной модификацией вещества и соединением, использованным в качестве мономера.
На данный момент выделяют 4 вида данных полимеров: фторопласт-4 (политетрафторэтилен (-C2F4-)n, торговые марки — Teflon, Hostaflon TF, Fluon G, Algoflon F, Polyflon M);
фторопласт-3 (политрихлорфторэтилен (-CF2-CFCl)n, торговые марки — Dyflon, KEL-F, Voltalef, Neoflon CTFE);
фторопласт-2 (поливинилиденфторид (CH2CF2)n, торговые марки — Kynar, Solef, Neoflon VDF);
фторопласт-40 (сополимер тетрафторэтилена (CF2CF2CH2CH2)n, торговые марки — Tefzel, Hostaflon ET, Neoflon ETFE).
Несмотря на самый низкий коэффициент сухого трения среди полимеров, фторопласты не являются взаимными аналогами друг друга, отличаясь целым рядом технических характеристик.
Фторопласт-4, или тефлон, активно используется:
в машиностроении. Благодаря устойчивости к трению и воздействию агрессивных сред, из полимера изготавливаются сальники, подшипники, поршневые кольца, пыльники, автомобильные шины. Стойкость к нагреву позволяет производить из него детали для моторов;
в электро- и радиотехнике. Материал может использоваться в качестве изолятора или проводника тока (при внесении модификаций в его молекулярную структуру). Из политетрафторэтилена изготавливают печатные платы, кабели, элементы реле и выключатели.
в легкой промышленности. Обработка изделий этим полимером позволяет сделать их водостойкими.
в химической промышленности. Тефлон используется для производства лабораторной посуды, в том числе антикоррозийных трубок для хроматографов.
в медицине. Применение фторопласта при производстве протезов сосудов и внутренних органов обусловлено тем, что он не вызывает иммунологических реакций.
в пищевой промышленности. Тефлон используется при производстве сковород и форм для выпечки с антипригарным покрытием, шприцов для кремов, контейнеров для скоропортящихся продуктов, раскатывающих механизмов для теста.
Это интересно
Тефлон был открыт в 1938 году химиком Роем Планкеттом, работающим в американской корпорации Kinetic Chemicals. Ученый случайно обнаружил, что газообразный тетрафторэтилен, закачанный в баллоны под давлением, полимеризовался в порошок, обладающий уникальными свойствами. Патент на этот полимер был выдан в 1941 году. А 8 лет спустя Kinetic Chemicals стала подразделением мирового химического гиганта DuPont. В СССР о политетрафторэтилене узнали во время второй мировой войны, когда советские техники разобрали танк производства США и обнаружили в его башенном механизме большое белое кольцо из фторопласта.
Технические характеристики фторопласта