Фрагмент для ознакомления
2
Введение
Специальность «функциональная диагностика» (ФД) первоначально была выделена из терапии для эффективной диагностики внутренних болезней с помощью различных медицинских технологий. Среди всех функционально-диагностических методов особое значение в настоящее время приобретает ультразвуковая диагностика заболеваний сердечно-сосудистой и нервной систем, процент которой среди всех исследований в ФД неуклонно увеличивается. Учитывая высокую потребность ЛПУ России в ультразвуковой диагностике различных органов и систем, необходимо четко определить условия эффективной работы и взаимодействия диагностических служб, участвующих в этом процессе.
УЗИ-сканер — универсальный диагностический инструмент, который за короткий промежуток времени позволяет оценить состояние исследуемых органов человека. Современное УЗИ-оборудование можно смело назвать «глазами» врача: с помощью сканера специалист может оценить форму органа, его размеры, расположение. УЗИ-сканеры — оборудование не дешевое, но быстро окупающееся. Сканеры никогда не будут стоять без дела, при этом они не требуют использования дорогостоящих расходных материалов (например, специальной пленки), всю информацию можно сохранять на электронных носителях.
Основной сложностью при оснащении ЛПУ является корректное составление технического задания на требуемые ИМТ и выбор оптимального ИМТ из числа предложенных.
1. История создания ультразвукового УЗИ
Современным пациентам сложно представить, что ещё не так давно медики обходились без такого метода диагностики, как ультразвуковое исследование. Ультразвук произвёл настоящую революцию в медицине, наделив врачей высокоинформативным и безопасным способом обследования пациентов.
Всего за каких-то полвека, которые насчитывает история ультразвуковой медицины, УЗИ стало главным помощником в диагностике большинства заболеваний. Как же появился и развивался этот метод?
Первые исследования ультразвуковых волн.
О наличии в природе звуковых волн, не воспринимаемых человеком, люди догадывались давно, но открыл «невидимые лучи» итальянец Л. Спалланцани в 1794 г., доказав, что летучая мышь с заткнутыми ушами перестаёт ориентироваться в пространстве.
Первые научные опыты с ультразвуком стали проводиться еще в XIX в. Швейцарскому учёному Д. Колладену в 1822 г. удалось вычислить скорость звука в воде, погружая в Женевское озеро подводный колокол, и это событие предопределило рождение гидроакустики.
В 1880 году братья Кюри обнаружили пьезоэлектрический эффект, возникающий в кварцевом кристалле при механическом воздействии, а спустя 2 года был сгенерирован и обратный пьезоэффект. Это открытие легло в основу создания из пьезоэлементов преобразователя ультразвука – главного компонента любого УЗ-оборудования.
XX век: гидроакустика и металлодетекция.
Начало XX века ознаменовалось развитием гидролокации – обнаружения объектов под водой при помощи эха. Созданием первых эхолотов мы обязаны сразу нескольким учёным из разных стран: австрийцу Э. Бэму, англичанину Л. Ричардсону, американцу Р. Фессендену. Благодаря гидролокаторам, сканировавшим морские глубины, стало возможным находить подводные препятствия, затонувшие корабли, а в годы I мировой войны – вражеские субмарины.
Еще одним ультразвуковым направлением стало создание в начале 30-х годов дефектоскопов для поиска изъянов в металлических конструкциях. Своё место УЗ-металлодетекция нашла в промышленности. Одним из основателей данного метода стал российский учёный С.Я. Соколов.
Методы эхолокации и металлодетекции заложили фундамент для первых экспериментов с живыми организмами, которые и проводились приборами промышленного назначения.
Ультразвук: шаг в медицину.
Попытки поставить ультразвук на службу медицине относятся к 30-м годам XX века. Его свойства начали применять в физиотерапии артритов, экземы и ряда других заболеваний.
Опыты, начавшиеся в 40-е годы, были направлены уже на использование УЗ-волн в качестве инструмента диагностики новообразований. Успехов в исследованиях достиг венский психоневролог К. Дюссик, который в 1947 году представил метод, названный гиперсонографией. Доктору Дюссику удалось обнаружить опухоль мозга, замеряя интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента. Именно этот учёный считается одним из родоначальников современной УЗ-диагностики.
Настоящий прорыв в развитии УЗД произошел в 1949 году, когда учёный из США Д. Хаури сконструировал первый аппарат для медицинского сканирования. Это и последующие творения Хаури мало напоминали современные приборы. Они представляли собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп.
Примерно в это же время американский хирург Дж. Уайлд создал портативный прибор с подвижным сканером, который выдавал в режиме реального времени визуальное изображение новообразований. Свой метод он назвал эхографией.
В последующие годы УЗИ-сканеры совершенствовались, и к середине 60-х годов они стали приобретать вид, близкий к современному оборудованию с мануальными датчиками. Тогда же западные врачи начали получать лицензии для использования в практике метода УЗД.
УЗД в советской медицине
Эксперименты по применению ультразвука проводились и советскими учеными. В 1954 году в институте акустики Академии Наук СССР появилось специализированное отделение, возглавляемое профессором Л. Розенбергом.
Выпуск отечественных УЗИ-сканеров был налажен в 60-е годы в НИИ инструментов и оборудования. Учёные создали ряд моделей, предназначенных для применения в различных медицинских сферах: кардиологии, неврологии, офтальмологии. Но все они так и остались в статусе экспериментальных и не получили «места под солнцем» в практической медицине.
К тому моменту, когда советские врачи начали проявлять интерес к ультразвуковой диагностике, им уже приходилось пользоваться плодами достижений западной науки, поскольку к 90-м годам прошлого века отечественные разработки безнадёжно устарели и отстали от времени.
Современные технологии в УЗИ.
Методы ультразвуковой диагностики продолжают активно развиваться. На смену обычной двухмерной визуализации приходят новые технологии, позволяющие получать объёмную картинку, «путешествовать» внутри полостей тела, воссоздавать внешний вид плода. Например:
Трёхмерное УЗИ – создаёт 3D изображение в любом ракурсе.
Эхоконтрастирование – УЗИ с применением внутривенного контраста, содержащего микроскопические газовые пузырьки. Отличается повышенной точностью диагностики.
Тканевая, или 2-я гармоника (THI) – технология с улучшенным качеством и контрастностью изображения, показана пациентам с избыточным весом.
Соноэластография – УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.
Ультразвуковая томография – методика, аналогичная по информативности КТ и МРТ, но при этом совершенно безвредная. Собирает объёмную информацию с последующей компьютерной обработкой изображения в трёх плоскостях.
4 D– узи – технология с возможностью навигации внутри сосудов и протоков, так называемый «взгляд изнутри». По качеству изображения похоже на эндоскопическое исследование.
2 Теоретический обзор. Принцип действия ультразвукового УЗИ
УЗИ аппараты – это один из основных инструментов диагностики. Его принцип работы основывается на таком явлении как ультразвук.
Сверхзвук не воспринимается человеческим ухом, поскольку колебания звуковой волны в этом случае воспроизводятся с очень большой частотой. УЗИ аппараты посылают в полость исследуемого объекта ультразвук, который при отражении создает эхо. УЗИ аппараты (УЗ сканеры) дают возможности получать двух мерные изображения – эхограммы. Это происходит при помощи звуковых волн высокой частоты.
УЗИ аппараты представлены на рынке мед оборудования различными УЗ сканерами. Название УЗ сканер обусловлено тем, что электронный аппарат оснащен сканирующим лучом.
УЗИ аппараты широко применяются для исследований заболеваний мягких тканей (для исследования костных тканей данные аппараты не применяются), определения кист, наполненных жидкостью и плотных образований (опухоли). Также УЗИ аппараты широко применяется при обследовании внутриутробного развития плода.
УЗИ аппараты "работают" на операциях, взятии сложных анализов и выполняют функцию "третьего глаза" для медицинского персонала. При наблюдении за беременными и развитием плода УЗИ аппараты являются незаменимыми помощниками для работников женских консультаций и перинатальных центров.
Исследование, которое проводят УЗИ аппараты, необходимо, для так называемой визуализации. При этом они не дают полного представления об исследуемом новообразовании и не позволяют дать заключение о характере опухоли.
УЗИ аппараты – это первичный инструмент, который благодаря своей доступности и мобильности, позволяет провести первое и самое важное исследование.
Генератор УЗ-колебаний состоит из пьезоэлектрического материала, большей частью керамического, на передней и задней стороне которого находятся электрические контакты. На переднюю сторону, обращенную к больному, нанесен согласующий слой, который предназначен для оптимального проведения ультразвука в ткани. На задней стороне пьезоэлектрические кристаллы покрыты слоем, который сильно поглощает ультразвук, что препятствует отражению УЗ-волн в разные стороны и ограничивает подвижность кристалла. Это позволяет добиться того, чтобы УЗ-датчик излучал как можно более короткие УЗ-импульсы. Длительность импульса - определяющий фактор осевой разрешающей способности.
Датчик для УЗИ в В-режиме, как правило, состоит из многочисленных мелких, примыкающих друг к другу керамических кристаллов, которые настраивают по отдельности или группами.
УЗ-датчик очень чувствителен. Это объясняется, с одной стороны, тем, что он в большинстве случаев содержит керамические кристаллы, которые очень хрупки, с другой – тем, что составные элементы датчика расположены с большой точностью друг возле друга и при механическом встряхивании или ударах могут сместиться или сломаться. Стоимость современного УЗ-датчика зависит от типа оборудования и примерно равна стоимости автомобиля среднего класса.
Принцип работы УЗИ аппарата.
Перед транспортировкой УЗ-аппарата надежно закрепите УЗ-датчик на аппарате, а лучше отсоедините его. Датчик при падении легко ломается, и даже незначительные его сотрясения могут вызвать серьезное повреждение.
В диапазоне применяемых в медицинской диагностике частот невозможно получить резко сфокусированный луч, подобный лазерному, которым можно «зондировать» ткани. Однако для получения оптимального пространственного разрешения необходимо стремиться максимально уменьшить диаметр УЗ-луча (в качестве синонима УЗ-луча иногда употребляют термин «УЗ-луч» — этим подчеркивается, что в случае УЗ-поля речь идет о пространственной структуре, которая в идеале имеет минимальный диаметр).
Рисунок 1 - УЗИ
Чем меньше УЗ-луч, тем лучше видны при УЗИ детали анатомических структур.
Поэтому ультразвук по возможности фокусируют на определенную глубину (несколько глубже исследуемой структуры), с тем, чтобы УЗ-луч образовал «талию». Фокусируют ультразвук либо с помощью «акустических линз», либо, подавая на отдельные пьезокерамические элементы преобразователя импульсные сигналы с различными взаимными сдвигами во времени. При этом фокусирование на большую глубину требует увеличения активной поверхности, или апертуры, УЗ-преобразователя.
При сфокусированном датчике в УЗ-поле выделяют три зоны:
- ближнюю;
- фокусную;
- дальнюю.
Наиболее четким УЗ-изображение получается тогда, когда исследуемый объект находится в фокусной зоне УЗ-луча. Объект располагается в фокусной зоне, когда УЗ-луч имеет наименьшую ширину, а значит, его разрешающая способность максимальна