Фрагмент для ознакомления
2
Актуальность работы. ФГОС НОО ставит перед педагогами задачу подготовки активной, творческой и ответственной личности ученика. Ориентация на результаты образования и требования к результатам освоения общей образовательной программы представлены в Федеральном государственном стандарте начального общего образования (далее - ФГОС НОО). Основной задачей обучения математике для младших школьников является развитие вычислительных навыков.
В современной образовательной среде используют много разнообразных подходов, чтобы повысить качество учебно-воспитательного процесса в общеобразовательной школе. В первую очередь речь идёт о педагогических образовательных технологиях. Часто можно услышать разные названия технологий: воспитывающие, развивающие, образовательные, педагогические и др., но все они направлены на личностный рост и развитие школьников.
В современной образовательной среде чрезвычайно важно индивидуальное развитие и образование младшего школьника. В связи с этим, можно говорить о проектировании развивающей образовательной среды, которая способствует интеллектуальному, физическому и нравственному развитию каждого из детей. Это обусловливает необходимость в теоретической разработке и практическом подтверждении развития способностей, активности и логического мышления младших школьников. Помочь в этом может дифференцированное обучение и индивидуальный подход, которые можно рассматривать в рамках любой педагогической технологии, в том числе, игровой. Именно этого требует логическая и иная подготовка младших школьников.
Федеральный государственный образовательный стандарт (ФГОС) НОО и основные образовательные программы начальной школы ориентированы на развитие познавательного интереса младших школьников, позиции субъект - субъектных отношений учителя и ученика. Это происходит в ходе реализации целостного учебно-воспитательного процесса и на каждом уроке.
Математику принято считать одной из основных учебных дисциплин. Этот предмет с начальной школы выполняет важную роль в развитии ребенка, особенно математика оказывает влияние на развитие интеллектуальной деятельности и стимулирует психические процессы (анализ, синтез, логическое мышление и др.). Для этого необходимо формировать алгебраические понятия, такие как: выражение (математическое), переменная, числовое выражение, буквенное выражение, числовое равенство и неравенство, уравнение.
Исходя из наблюдения, множество преподавателей сталкиваются с трудностями привлечения детей к учебной деятельности, и чаще всего это связано с низкой мотивацией учащихся для получения новых знаний. Чтобы преодолеть эту проблему, необходимо искать средства, которые будут оказывать положительное влияние на развитие общей активности школьников. Овладение этими концепциями необходимо для успешного понимания и обучения в дальнейшем. Однако алгебраические понятия могут быть сложными для первоклассников.
Актуальность работы позволила сформулировать вопрос: могут ли дидактические игры способствовать формированию алгебраических понятий (числовые равенства и неравенства) у первоклассников?
Область - педагогика, методика математики.
Объектом курсовой работы является формирование алгебраических понятий у младших школьников.
Предмет: использование дидактических игр на уроке математики.
Цель: изучение дидактических игр как средства формирования алгебраических понятий.
Цель определила следующие задачи:
1) раскрыть сущность методики работы над алгебраическими понятиями.
2) рассмотреть особенности использования дидактических игр на уроках математики.
3) проанализировать и обобщить опыт педагогов по использованию дидактических игр как средство формирования алгебраических понятий и первоклассников.
Методической основой исследования являются работы в области теории и практики дидактических игр таких авторов как А.П. Усова, Е.И. Радина, Д.Б. Эльконин, А.И. Сорокина, В.Н. Аванесова, Л.А. Венгер и др. Во всех исследованиях авторы определяют взаимосвязь обучения и игры, а также основные формы и методы руководства дидактическими играми.
Методы, использованные для написания работы: изучение и анализ литературы по теме, наблюдение, сравнение и анализ результатов.
ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ АЛГЕБРАИЧЕСКИХ ПОНЯТИЙ У ПЕРВОКЛАССНИКОВ ПОСРЕДСТВОМ ДИДАКТИЧЕСКИХ ИГР
1.1. Формирование алгебраических понятий в начальной школе
При поступлении в школу у ребенка резко меняется его образ жизни в силу того, что основным видом его деятельности становится учение. И для того чтобы успешно учиться, ребенок должен не только быть психологически готов к учебной деятельности, но и иметь устойчивое желание учиться. Поэтому особенно важное для младших школьников значение имеет мотивация учения, основу которой на первых порах составляет интерес к школе вообще, интерес к новому виду деятельности - учению.
И только при условии, что интерес к учению постоянно поддерживается учителем, у ребенка постепенно развивается интерес к приобретению новых знаний [4].
Ключевыми алгебраическими понятиями начального курса математики являются такие как математическое выражение, переменная, числовое равенство, уравнение и др. Чтобы сформировать у младшего школьника соответствующие математические понятия учитель рассматривает четыре этапа:
1. Этап мотивации.
2. Введение понятия.
3. Практическая мотивирующая задача.
4. Усвоение и закрепление понятия.
Чтобы успешно решить все эти задачи и этапы в комплексе учитель в своей профессиональной деятельности использует инновационные образовательные технологии, среди которых наибольшую популярность получили игровые технологии и методы дидактических игр.
Современное понятие педагогической технологии чрезвычайно широко. Прежде чем раскрыть понятие педагогическая технология, необходимо упомянуть, что чаще всего это понятие используют во всех случаях, когда говорят о развивающем обучении, поскольку эти понятия неразрывны между собой [11].Введение алгебраического материала в начальный курс математики позволяет подготовить учащихся к изучению основных понятий современной математики (переменная, уравнение, равенство, неравенство и др.), способствует обобщению арифметических знаний, формированию у детей функционального мышления.
Учащиеся начальных классов должны получить первоначальные сведения о математических выражениях, числовых равенствах и неравенствах, научиться решать уравнения, предусмотренные учебной программой и простые арифметические задачи с помощью составления уравнения (теоретическая основа выбора арифметического действия в которых связь между компонентами и результатом соответствующего арифметического действия).
Изучение алгебраического материала ведётся в тесной связи с арифметическим материалом. Следует рассмотреть формирование таких алгебраических понятий, как числовые равенства и неравенства. Эти понятия начинают изучать с 1 класса и являются одними из основополагающих. Первые представления о равенствах и неравенствах младшие школьники получают еще в первом классе, когда начинают сравнивать множества и числа. Данное изучение в первую очередь связывается с работой над нумерацией чисел, с арифметическими действиями и величинами. На следующем этапе учителю необходимо начать формирование у детей представление о верных и неверных равенствах и неравенствах, о равенствах и неравенствах с переменной [12]. Понятия о простейших выражениях формируются у детей в связи с изучением арифметических действий, затем вводятся сложные выражения и выражения с переменной.
Младшие школьники учатся вычислять значения сложных числовых выражений, используя правила порядка действий. Они учатся находить при заданных значениях букв значения выражений с переменной [12].
В условиях совершенствования методов обучения и воспитания детей возникает актуальность поиска развития содержания образования и определения наиболее удачных приемов, которые являются оптимальными для логической подготовки учеников.
Логическая подготовка связана непосредственно с уровнем интеллектуального развития субъекта, соответственно возрасту [15]. Психологи и педагоги чаще говорят о развитии логического мышления школьников. Проблема исследования логического мышления является всегда актуальной, поскольку разные исследователи пишут о различных подходах к изучению сущности интеллекта и мышления в целом.
В.В. Левитес пишет, что логичность как признак культуры речи формируется на уровне: мышление - язык – речь. Эта взаимосвязь зависит от степени овладения приемами умственной деятельности и знания законов логики [3]. В начале школьного обучения развитие ребенка характеризуется ситуативностью в становлении логической составляющей мышления.
Ребёнок ещё не может осуществлять самоконтроль за мыслительными операциями, доказательно рассуждать и сопоставлять выбор способов деятельности с начальными условиями и результатами задания. Суждения дошкольников являются следствием оформления их эмпирического опыта. Дидактический акцент в этом случае меняется с условия задания на конечную цель его выполнения при усилении роли содержательно-мотивационной составляющей.
Чтобы логическое мышление ребёнка развивалось системно и комплексно, необходимо использовать дифференцированный подход в обучении и систему практически-ориентированных задач, направленных на развитие логичности мышления субъекта. Развивающие возможности образовательной области математики лучше всего позволяют это делать, начиная с начальной школы. Педагог обеспечивает преобразующий характер деятельности младших школьников, позволяющий развивать их целостное мышление, в том числе и логическое.
Дети учатся во время урока:
-наблюдать;
-сравнивать;
-классифицировать;
-группировать;
-выявлять закономерности;
-заполнять таблицы и строить графики;
-делать краткие и развёрнутые выводы.
Интенсивная самостоятельная деятельность младших школьников всегда связана с эмоциональными переживаниями. Учитель может это использовать для создания эффекта неожиданности. На этой основе можно создавать проблемные ситуации, но при этом очень важно, чтобы дети могли самостоятельно обозначать имеющиеся противоречия [12].
Учителя практики отмечают, что даже дети среднего звена обучения в школе испытывают сложности при формулировании противоречий, проблем и гипотез. У детей, не всегда получается увязывать воедино понятия: противоречие и проблема. Учитель при этом создает атмосферу заинтересованности каждого ученика при работе всего класса. Для этого важно обеспечить на уроке коллективный поиск детей.
Этот процесс, несомненно, грамотно направляется учителем за счёт его наводящих вопросов. Урок должен иметь продуктивное начало и рефлексивное завершение. Для того, кто проводит анализ урока учителя начальных классов, должно быть очевидно, что деятельность учеников и деятельность учителя на уроке заранее хорошо спланирована.
На уроке должны быть чётко сформулированы тема, цель и задачи урока, если только учителем не предусмотрено нечто иное, и это иное отражено в плане – конспекте урока. Урок должен быть одновременно проблемным и развивающим. Для этого учителю необходимо организовать проблемные и поисковые ситуации. Именно это лучше всего активизирует деятельность детей.
Желательно, чтобы ученики сами как можно чаще и развёрнуто делали соответствующие наблюдения и выводы. Очевидно, что учитель не сможет полностью обойтись без репродуктивных приёмов и методов, но, тем не менее, очень важно стремиться к тому, чтобы их было на уроке как можно меньше. На уроке должно быть как можно больше творчества и сотворчества со стороны самих детей.
Учитель в своей работе должен учитывать:
-уровень и возможности всего класса и каждого ребёнка в отдельности;
-профиль класса (если такое имеет место быть);
-настроение детей;
-степень усталости детей (возможно, они пришли с урока физкультуры и др.);
-наличие обратной связи с детьми.
Как уже было отмечено – очень важно поддерживать у детей на уроке учебную мотивацию. Для младших школьников здесь существуют отдельные рекомендации. Учителю важно обеспечить успешный опыт каждому ребёнку. Воспринимаемый успех повышает ощущение собственной компетентности.
Ребёнок должен ощущать, что ему по силам любое задание, которое задал учитель. Младших школьников иногда можно поощрять. При этом, можно связать поощрение с его определенным поведением, чтобы повысить информационную значимость поощрения. Главное, чтобы ребёнок хорошо понимал, за что именно его учитель поощряет [3].
Младшим школьникам достаточно иногда словесного поощрения. Словесное подбадривание учителя обеспечивает положительную обратную связь и помогает ребёнку продолжать стремиться к совершенствованию. При формировании у детей логической компетентности используют следующие методы:
- эвристический;
- исследовательский;
-проблемно-поисковый.
Эвристический метод помогает ученику приобщиться к процессу «открытия» новых знаний, понятий, закономерностей, способов. Исследовательский метод обеспечивает овладение детьми способами научного познания. Основным методом формирования логической компетентности младших школьников является метод обучения в деятельности (проблемно-поисковый метод).
Благодаря этому методу происходит сочетание учебной деятельности учеников с их познавательной деятельностью. При решении школьниками проблемной ситуации происходит установление межпредметных связей и интеграция материала из разных смысловых линий [5].
При этом задействовано логическое мышление, которое предполагает умение анализировать, сравнивать, обобщать и др. Всё это возможно лишь в том случае, если педагог владеет современными педагогическими образовательными технологиями, в том числе, на основе дифференцированного подхода. В данном случае под такой технологией можно понимать продуманную во всех деталях модель совместной педагогической деятельности по проектированию, организации и проведению учебного процесса. Причём это имеет отношение, как к обучению, так и к воспитанию младших школьников.
Любая деятельность нацелена на конкретный результат. Результат может быть достигнут лишь в том случае, если есть обратная связь субъектов взаимодействия. Вероятно, сложно говорить об этом по отношению к каждому ребёнку, поскольку на уроке у учителя есть свои конкретные цели и задачи, особенно, если речь идёт об усвоении нового материала.
Но при этом важно понимать, что никто лучше учителя не знает возможностей и ресурсов каждого ученика. И если на уроке усвоения нового материала все дети слушают учителя и работают, то на всех последующих уроках можно организовывать их деятельность таким образом, чтобы каждый из детей задействовал именно свой личностный ресурс.
Одни дети любят рассказывать, другие любят слушать. Некоторые дети хорошо владеют подготовкой мультимедийных презентаций, другие любят делать сообщения и др. Здесь для учителя главное – максимально обеспечить их продуктивную учебную деятельность, чтобы учебная мотивация ребёнка продолжала оставаться как можно дольше.
Фрагмент для ознакомления
3
1. Алиева, Г.М. Методика организации игровой деятельности в воспитании и развитии школьников / Г.М. Алиева // Сибирский педагогический журнал – 2019. – N 10. – С.299-303.
2. Абросимова, Г.А. Новые технологии образования в вузе:
смешанное обучение [Текст] / Г.А. Абросимова // Alma mater. – 2019. – N 6. – С. 65-69.
3. Виситова, Л.С. Инновационные методы преподавания в начальной школе / Л.С. Виситова. - Текст: непосредственный // Образование и воспитание. - 2019. - № 1 (6). - С. 16-19. - URL: https://moluch.ru/th/4/archive/25/710/ (дата обращения: 01.06.2024).
4. Волкова, Л.В. Современные подходы к пониманию образовательной среды Л.В. Волкова. - электрон. сб. ст. по матер. IХ Всерос. науч.-практ. конф. (Педагогические чтения памяти профессора А.А. Огородникова) (7 февраля 2020 г., г. Пермь, Россия) / под общ. ред Л.В. Селькиной; Перм. гос. гуманит.-пед. ун-т. – Пермь, 2020. – С. 16-20.
5. Возрастная и педагогическая психология: учебник под ред. Б.А. Сосновского. - Москва: Юрайт, 2023. – 411 с.
6. Губанова, М.И. Функциональная грамотность младших школьников [Текст] / М.И. Губанова, Е.П. Лебедева // Начальная школа + До и После. – 2019. – N 12 – С. 1-4.
7. Говорская, О.П. Работа с Интернет-ресурсами в начальной школе / О.П.Говорская // [Электронный ресурс] - Режим доступа. -http://festival.1september.ru/ ((дата обращения: 01.06.2024).
8. Государственная образовательная платформа «Российская
электронная школа» [Электронный ресурс]. URL: http://resh.in.edu.ru (дата обращения: 01.06.2024).
9. Гакаева, А.Х. Роль игры и игровых технологий в повышении познавательной активности учащихся / А.Х. Гакаева. — Текст: непосредственный // Актуальные вопросы современной педагогики: материалы VII Междунар. науч. конф. (г. Самара, август 2020 г.). — Самара: ООО "Издательство АСГАРД", 2020. — С. 3-6. — URL: https://moluch.ru/conf/ped/archive/202/8631/ (дата обращения: 01.06.2024).
10. Дидковская, Н.Е. Проектирование развивающей образовательной среды в общеобразовательной школе в условиях реализации ФГОС / Н.Е. Дидковская. — Текст: непосредственный // Проблемы и перспективы развития образования: материалы VI Междунар. науч. конф. (г. Пермь, апрель 2019 г.). — Пермь: Меркурий, 2019. — С. 29-36. — URL: https://moluch.ru/conf/ped/archive/149/7845/ (дата обращения: 231.03.2024).
11. Еноторова, А.М. К вопросу необходимости внедрения индивидуального образовательного маршрута / А.М. Еноторова. - электрон. сб. ст. по матер. IХ Всерос. науч.-практ. конф. (Педагогические чтения памяти профессора А.А. Огородникова) (7 февраля 2020 г., г. Пермь, Россия) / под общ. ред Л.В. Селькиной; Перм. гос. гуманит. -пед. ун-т. – Пермь, 2020. – С. 47-52.
file:///C:/Users/User/Desktop/Organizacija_razvivajushhej_obrazovatelnoj_sredy_v_nachalnoj_shkole.PDF (дата обращения: 01.06.2024).
12. Емельянова, Т.В. Игровые технологии в образовании: электронное учеб. -метод. пособие / Т.В. Емельянова, Г.А. Медяник. – Тольятти: Изд-во ТГУ, 2019. file:///C:/Users/User/Downloads/Igrovyie_tehnologii_v_obrazovanii%20(1).pdf (дата обращения: 01.06.2024).
13. Копылова, В.Б. Место и роль игровых технологий в образовательном процессе / В.Б. Копылова. — Текст: непосредственный // Проблемы и перспективы развития образования: материалы VIII Междунар. науч. конф. (г. Краснодар, февраль 2019 г.). — Краснодар: Новация, 2019. — С. 156-158. — URL: https://moluch.ru/conf/ped/archive/187/9596/ (дата обращения: 01.06.2024).
14. Ковалева Г.С. Оценка функциональной грамотности. – URL: https://topuch.com/gramotnosti-uchashihsya-osnovnoj-shkoli-konceptualenie-ramki-r/index.html (дата обращения: 01.06.2024).
15. Михайленко, Т.М. Игровые технологии как вид педагогических технологий / Т.М. Михайленко. — Текст: непосредственный // Педагогика: традиции и инновации: материалы I Междунар. науч. конф. (г. Челябинск, октябрь 2021 г.). — Т. 1. — Челябинск: Два комсомольца, 2021. — С. 140-146. — URL: https://moluch.ru/conf/ped/archive/19/1084/ (дата обращения: 01.06.2024).
16. Муромцева, О.В. Игровые технологии в начальной школе / О.В. Муромцева. — Текст: непосредственный // Молодой ученый. — 2020. — № 10 (114). — С. 1252-1254. — URL: https://moluch.ru/archive/114/29765/ (дата обращения: 01.06.2024).
17. Первова, Г.М. Дидактическая игра: как метод обучения математике/ Г.М. Первова // Вестник Тамбовского университета. – 2020. – N 7. – С. 208-212.
18. Пугачев, А.С. Игровая деятельность как средство обучения подрастающего поколения / А.С. Пугачев. — Текст: непосредственный // Молодой ученый. — 2022. — № 11 (46). — С. 474-476. — URL: https://moluch.ru/archive/46/5703/ (дата обращения: 01.06.2024).
19. Нарыкова, Г.В. Организация развивающей образовательной среды начальной школы в условиях реализации ФГОС НОО / Г.В. Нарыкова. - электрон. сб. ст. по матер. IХ Всерос. науч.-практ. конф. (Педагогические чтения памяти профессора А.А. Огородникова) (7 февраля 2019 г., г. Пермь, Россия) / под общ. ред Л.В. Селькиной; Перм. гос. гуманит. - пед. ун-т. – Пермь, 2019. – С. 131-135. file:///C:/Users/User/Desktop/Organizacija_razvivajushhej_obrazovatelnoj_sredy_v_nachalnoj_shkole.PDF (дата обращения: 01.06.2024).
21. Организация развивающей образовательной среды: электрон. сб. ст. по матер. IХ Всерос. науч.-практ. конф. (Педагогические чтения памяти профессора А.А. Огородникова) (7 февраля 2019 г., г. Пермь, Россия) / под общ. ред Л.В. Селькиной; Перм. гос. гуманит. - пед. ун-т. – Пермь, 2019. – 408 с. file:///C:/Users/User/Desktop/Organizacija_razvivajushhej_obrazovatelnoj_sredy_v_nachalnoj_shkole.PDF (дата обращения: 01.06.2024).
22. Пигулевская, Н.И. Инновационная модель современного образовательного процесса [Электронный ресурс]. – Режим доступа: http://ispu.ru/files/SovetRector_9-2008-с.31-37.pdf (дата обращения: 01.06.2024).
23.Теплов, Б.М. Способности и одаренность [Текст] / Теплов, Б.М. // Хрестоматия возрастной и педагогической психологии. – М.- 2019. – 267 с.
24. Хозиев, В.Б. Практикум по психологии формирования продуктивной деятельности дошкольников и младших школьников [Текст] / В.Б. Хозиев. – М.: Академия, 2021. – 272 с.