Фрагмент для ознакомления
2
В последние годы астрофизики и космологи пришли к единой точке зрения относительно того, что происходило в нашей Вселенной, когда ее возраст перевалил за одну микросекунду (более ранние события все еще служат предметом дискуссий). В это время случилась так называемая Великая аннигиляция тогда еще свободных кварковых частиц, которая уничтожила все антикварки, однако пощадила возникший до этого мизерный избыток кварков.
К тому времени, когда возраст мироздания достиг 10 микросекунд, кварки слились в тройки (порождая барионы — протоны и нейтроны) и пары (нестабильные мезоны, в основном пионы). На каждый барион приходилось около миллиарда высокоэнергетичных фотонов, температура которых в те времена составляла порядка 4 трлн градусов. На десятой микросекунде Вселенная заполнилась сверхгорячей плазмой чудовищной плотности (примерно 100 млн тонн на кубический сантиметр), состоящей в основном из высокоэнергетичных лептонов — электронов и позитронов, порождаемых из-за высокой температуры гамма-квантами. По сей причине эту фазу ранней истории Вселенной называют лептонной эрой (а предшествующую ей — кварковой). Размер наблюдаемой Вселенной тогда был меньше сотни астрономических единиц, то есть сильно уступал размерам современной Солнечной системы.
Лептонная эра продолжалась до тех пор, пока гамма-квантам хватало энергии для порождения электронов и позитронов. По мере расширения Вселенной температура фотонного газа постоянно снижалась и достигла 10 млрд градусов, когда возраст мироздания составлял примерно одну секунду. Образование пар (во все меньшем и меньшем количестве) продолжалось за счет «горячего хвоста» фотонного спектра, однако спустя несколько секунд, когда температура фотонов спустилась ниже 4 млрд градусов, оно полностью прекратилось. К моменту, когда Вселенной исполнилось 10 секунд, лептонная эра уже ушла в прошлое, оставив после себя очень горячую плазму плотностью 5 кг/см3, преимущественно состоящую из фотонов. Началась новая космическая эра, когда плотность электромагнитного излучения превышала плотность вещества. Эту эру так и называют — радиационной.
В истории мироздания очень важна трехминутная отметка. На этой стадии впервые появилась возможность формирования составных ядер — ядер дейтерия (протон плюс нейтрон). Энергия связи такого ядра равна 2,2 МэВ, что соответствует температуре в 25 млрд градусов. Температура упала до этой величины, когда Вселенной было всего четверть секунды. Можно подумать, что дейтерий начал образовываться уже тогда, но такой вывод будет ошибочным. Электромагнитное излучение Вселенной еще долго содержало достаточное количество горячих фотонов, которые разбивали новорожденные ядра дейтерия. Дейтерий смог «выжить», лишь когда доля фотонов с энергией более 2,2 МэВ сократилась до одной миллиардной (общее число фотонов в полтора миллиарда раз превышало число подлежащих объединению барионов!).
Это произошло, когда возраст Вселенной достиг одной минуты, а еще через две минуты процесс синтеза дейтерия пошел в полную силу. Новорожденные ядра этого изотопа принялись присоединять по одному протону и одному нейтрону (в любом порядке) — так появились альфа-частицы, ядра гелия. Этот процесс занял всего несколько минут и охватил практически все нейтроны (очень небольшая их часть пошла на не переработанный в гелиевом синтезе дейтерий, гелий-3 и литий-7).
Исходное соотношение числа протонов и нейтронов равнялось 7:1, и каждая новая альфа-частица оставляла после себя 12 незадействованных протонов. Так космическое пространство оказалось заполненным ядрами водорода (75% общей массы) и гелия (25%). В наше время эти показатели равны 74% и 24% — оставшиеся 2% приходятся на более тяжелые элементы, порожденные процессами звездного нуклеосинтеза.
Примеры публикаций с описанием закона Хаббла
1. Алеманов С.Б. Квантовый закон Хаббла (Квантовый закон космологического красного смещения), журнал "Инженерная физика", №3, 2014, 40-46стр.
2. http://astrogalaxy.ru/792.html
Выбрать физическую величину. Рассмотреть определение физической величины по ГОСТ 8.417.
Длина 1,616·10-35 м
Рисунок 1 - Определение длины по ГОСТ 8.417
Выразить выбранную физическую величину в других естественных системах единиц
Из СИ в СГС: 1,616·10-35 м=1,616·10-33 см
Эталон и эталонная установка длины
Одной из первых попыток создать универсальную, т.е. воспроизводящуюся, меру длины, стала в 1668 году длина (математического) маятника, полупериод колебаний которого равен одной секунде. Идея хорошая, но во время путешествия в Южную Америку астроному Жану Рише пришлось укорачивать длину эталона, т.к. период его колебаний увеличился. Связано это было со сплющеностью геоида и, соответственно, уменьшением силы тяжести на экваторе. 1790 году было предложено уточнение, что эталон длины должен быть измерен на широте 45°N (примерно между Бордо и Греноблем), эта длина составляет 0.994 современного метра. Предложение, несмотря на изящность, тем не менее, не было принято.
В 1791 году метр был определён Французской Академией как одна сорокамиллионная часть Парижского меридиана (то есть одна десятимиллионная часть расстояния от северного полюса до экватора по поверхности земного эллипсоида на долготе Парижа). Простота калибровки вызывает некоторые сомнения, но аналогичная привязка есть и у морской мили (перемещение на одну морскую милю вдоль меридиана соответствует изменению географических координат на одну минуту широты). Можно подумать, что влияние неровности рельефа будет катастрофически влиять на точность эталона, но это не так — изменение высоты на 1000 метров приведёт к удлинению меридиана всего на 6283 метра, что даёт относительную ошибку в полторы десятитысячных (известная задачка про удлинение экватора на метр и муху). В реальности измерения проводились гораздо точнее, преимущественно на высоте уровня моря.
Фрагмент для ознакомления
3
Список литературы
1. Закон РФ «О стандартизации».
2. Закон РФ «Об обеспечении единства измерений».
3. Закон РФ «О сертификации услуг и продукции».
4. Закон РФ «О защите прав потребителей».
5. Правила по проведению сертификации в Российской Федерации (Утверждены постановлением Госстандарта России 16.02.1994, №3).
6. Система сертификации ГОСТ р. Порядок проведения сертификации продукции. – М.: Изд-во стандартов, 1996.
7. ГОСТ Р 1.0-92 Государственная система стандартизации Российской Федерации. Основные положения. – М.: Изд-во стандартов, 1992.
8. ГОСТ 8.417
9. Алеманов С.Б. Квантовый закон Хаббла (Квантовый закон космологического красного смещения), журнал "Инженерная физика", №3, 2014, 40-46стр.
10. http://astrogalaxy.ru/792.html