Фрагмент для ознакомления
3
1. Thamaraiselvi T., Rajeswari S. Biological evaluation of bioceramic materials-a review //Carbon. – 2004. – Т. 24. – №. 31. – С. 172.
2. Best S. M. et al. Bioceramics: Past, present and for the future //Journal of the European Ceramic Society. – 2008. – Т. 28. – №. 7. – С. 1319-1327.
3. Schwarzwalder K, Somers AV. Methods of making porous ceramic articles, US Pat 3090094, 1963
4. Chen, Q. Z., Thompson, I. D., & Boccaccini, A. R. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering // Biomaterials, 2006 27(11), 2414–2425.
5. Sieber H, Kaindl A, Schwarze D, Werner JP, Greil P. Light-weight cellular ceramics from biologically-derived preforms //CFI. Ceramic forum international. 2000, Vol 77, Num 1-2, pp 21-24
6. Zhu, X., Jiang, D., Tan, S., & Zhang, Z. Improvement in the Strut Thickness of Reticulated Porous Ceramics. // Journal of the American Ceramic Society, 2004, 84(7), 1654–1656.
7. Montanaro, L., Jorand, Y., Fantozzi, G., & Negro, A. Ceramic foams by powder processing. // Journal of the European Ceramic Society, 1998 18(9), 1339–1350.\
8. Saggio-Woyansky J., Scott C.E., Minnear W.P. Processing of porous ceramics // American Ceramic Society bulletin. 1992, Vol 71, Num 11, pp 1674-1682 ;
9. Luyten, J., Thijs, I., Vandermeulen, W., Mullens, S., Wallaeys, B., & Mortelmans, R. Strong ceramic foams from polyurethane templates. // Advances in Applied Ceramics, 2005, 104(1), 4–8.
10. Richardson, J., Peng, Y., & Remue, D. Properties of ceramic foam catalyst supports: pressure drop // Applied Catalysis A: General, 2000, 204(1), 19–32.
11. Haugen, H., Will, J., Köhler, A., Hopfner, U., Aigner, J., & Wintermantel, E. Ceramic TiO2-foams: characterisation of a potential scaffold // Journal of the European Ceramic Society, 2004, 24(4), 661–668.
12. Chen, Q. Z., Boccaccini, A. R., Zhang, H. B., Wang, D. Z., & Edirisinghe, M. J. Improved Mechanical Reliability of Bone Tissue Engineering (Zirconia) Scaffolds by Electrospraying. // Journal of the American Ceramic Society, 2006 89(5).
13. Kim, H.-W., Kim, H.-E., & Knowles, J. C. Hard-tissue-engineered zirconia porous scaffolds with hydroxyapatite sol-gel and slurry coatings. // Journal of Biomedical Materials Research, 2004, 70B(2), 270–277.
14. Chen Q. et al. Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glassceramicsThe HTML version of this article has been enhanced with colour images. – 2007.
15. Ben-Nissan B. Natural bioceramics: from coral to bone and beyond //Current opinion in solid state and materials science. – 2003. – Т. 7. – №. 4-5. – С. 283-288.
16. Roy D. M., Linnehan S. K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange //Nature. – 1974. – Т. 247. – №. 5438. – С. 220-222.
17. Ramay H. R., Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods //Biomaterials. – 2003. – Т. 24. – №. 19. – С. 3293-3302.
18. Zhang Y., Zhang M. Three‐dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load‐bearing bone implants //Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. – 2002. – Т. 61. – №. 1. – С. 1-8.
19. Lee Y. K. et al. Fabrication of macroporous scaffold using calcium phosphate Glass for bone regeneration //Key Engineering Materials. – 2004. – Т. 254. – С. 1079-1082.
20. Queiroz A. C. et al. Porous hydroxyapatite and glass reinforced hydroxyapatite for controlled release of sodium ampicillin //Key Engineering Materials. – 2004. – Т. 254. – С. 997-1000.21. Sepulveda P. et al. In vivo evaluation of hydroxyapatite foams //Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. – 2002. – Т. 62. – №. 4. – С. 587-592.
22. Sepulveda P. Gelcasting foams for porous ceramics //American Ceramic Society Bulletin. – 1997. – Т. 76. – №. 10. – С. 61-65.
23. Bouler J. M. et al. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength //Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials. – 1996. – Т. 32. – №. 4. – С. 603-609.
24. Koç N., Timuçin M., Korkusuz F. Fabrication and characterization of porous tricalcium phosphate ceramics //Ceramics International. – 2004. – Т. 30. – №. 2. – С. 205-211.
25. Sepulveda P., Jones J. R., Hench L. L. Bioactive sol‐gel foams for tissue repair //Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. – 2002. – Т. 59. – №. 2. – С. 340-348.
26. Lemos A. F., Ferreira J. M. F. Combining foaming and starch consolidation methods to develop macroporous hydroxyapatite implants //Key Engineering Materials. – 2004. – Т. 254. – С. 1041-1044.
27. Almirall A. et al. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste //Biomaterials. – 2004. – Т. 25. – №. 17. – С. 3671-3680.
28. Rainer A. et al. Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine //Acta Biomaterialia. – 2008. – Т. 4. – №. 2. – С. 362-369.
29. Kafle, B.P. Infrared (IR) spectroscopy // In Chemical Analysis and Material Characterization by Spectrophotometry; Elsevier: New York, NY, USA, 2020; pp. 199–243.
30. Adams, F.C. X-ray absorption and Diffraction | Overview. // Encyclopedia of Analytical Science; Elsevier: New York, NY, USA, 2019; pp. 391–403. ISBN 9780081019832
31. Brader, M.L. UV-absorbance, fluorescence and FT-IR spectroscopy in biopharmaceutical development. // Biophysical Characterization of Proteins in Developing Biopharmaceuticals; Elsevier: New York, NY, USA, 2020; pp. 97–121.
32. Akhtar, S.; Ali, S. Characterization of nanomaterials: Techniques and tools. In Applications of Nanomaterials in Human Health // Springer: Singapore, 2020; pp. 23–43.
33. Fa, K.; Jiang, T.; Nalaskowski, J.; Miller, J.D. Optical and spectroscopic characteristics of oleate adsorption as revealed by FTIR analysis. // Langmuir 2004, 20, 5311–5321.
34. Le Pevelen, D.D.; Tranter, G.E. FT-IR and raman spectroscopies, polymorphism applications. // Encyclopedia of Spectroscopy and Spectrometry; Elsevier: New York, NY, USA, 2016; pp. 750–761.
35. Bell, S.E.J.; Xu, Y. Infrared spectroscopy|Industrial applications. In Encyclopedia of Analytical Science; Elsevier: New York, NY, USA, 2019; pp. 124–133.
36. Kowalczuk, D.; Pitucha, M. Application of FTIR Method for the Assessment of Immobilization of Active Substances in the Matrix of Biomedical Materials // Materials 2019, 12, 2972.
37. Puspita, S.; Sunarintyas, S.; Mulyawati, E.; Anwar, C.; Sukirno; Soesatyo, M.H.N.E. Molecular weight determination and structure identification of Bombyx mori L. Fibroin as material in dentistry. // AIP Conference Proceedings; American Institute of Physics Inc.: College, MA, USA, 2020; Volume 2260, p. 40018.
38. Rafeek, A.D.; Choi, G.; Evans, L.A. Morphological, spectroscopic and crystallographic studies of calcium phosphate bioceramic powders. J. Aust. Ceram. Soc. 2018, 54, 161–168.
39. Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of fourier transform infrared (FT-IR) spectroscopy in Heritage Science: From micro: From non-invasive FT-IR. Phys. Sci. Rev. 2019, 4.
40. Margariti, C. The application of FTIR microspectroscopy in a non-invasive and non-destructive way to the study and conservation of mineralised excavated textiles. Herit. Sci. 2019, 7, 1–14.
41. Munajad, A.; Subroto, C. Suwarno Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 2018, 11, 364
42. Puppin-Rontani, J.; Fugolin, A.P.P.; Costa, A.R.; Correr-Sobrinho, L.; Pfeifer, C.S. In vitro performance of 2-step, total etch adhesives modified by thiourethane additives. Int. J. Adhes. Adhes. 2020, 103, 102688
43. Fugolin, A.P.; Lewis, S.; Logan, M.G.; Ferracane, J.L.; Pfeifer, C.S. Methacrylamide–methacrylate hybrid monomers for dental applications. Dent. Mater. 2020, 36, 1028–1037.
44. Fugolin, A.P.; Dobson, A.; Ferracane, J.L.; Pfeifer, C.S. Effect of residual solvent on performance of acrylamide-containing dental materials. Dent. Mater. 2019, 35, 1378–1387.
45. Alania, Y.; dos Reis, M.C.; Nam, J.-W.; Phansalkar, R.S.; McAlpine, J.; Chen, S.-N.; Pauli, G.F.; Bedran-Russo, A.K. A dynamic mechanical method to assess bulk viscoelastic behavior of the dentin extracellular matrix. Dent. Mater. 2020, 36, 1536–1543.
46. Zhang, P.; Zhao, X.M. Synthesis, crystal structure and bioactivity evaluation of a heterocyclic compound. Jiegou Huaxue 2020, 39, 1892–1897.
47. Seredin, P.V.; Uspenskaya, O.A.; Goloshchapov, D.L.; Ippolitov, I.Y.; Vongsvivut, J.; Ippolitov, Y.A. Organic-mineral interaction between biomimetic materials and hard dental tissues. Sovrem. Tehnol. V Med. 2020, 12, 43–51.
48. Gurgenc, T. Structural characterization and dielectrical properties of Ag-doped nano-strontium apatite particles produced by hydrothermal method. J. Mol. Struct. 2021, 1223, 128990.49. Jing, X.; Xie, B.; Li, X.; Dai, Y.; Nie, L.; Li, C. Peptide decorated demineralized dentin matrix with enhanced bioactivity, osteogenic differentiation via carboxymethyl chitosan. Dent. Mater. 2021, 37, 19–29.
50. Ramos, N.C.; Alves, L.M.M.; Ricco, P.; Santos, G.M.A.S.; Bottino, M.A.; Campos, T.M.B.; Melo, R.M. Strength and bondability of a dental Y-TZP after silica sol-gel infiltrations. Ceram. Int. 2020, 46, 17018–17024.
51. Asadi, F.; Forootanfar, H.; Ranjbar, M. A facile one-step preparation of Ca10(PO4)6(OH)2/Li-BioMOFs resin nanocomposites with Glycyrrhiza glabra (licorice) root juice as green capping agent and mechanical properties study. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1331–1339.
52. Fu, D.; Lu, Y.; Gao, S.; Peng, Y.; Duan, H. Chemical Property and Antibacterial Activity of Metronidazole-decorated Ti through Adhesive Dopamine. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2019, 34, 968–972
53. Yakufu, M.; Wang, Z.; Wang, Y.; Jiao, Z.; Guo, M.; Liu, J.; Zhang, P. Covalently functionalized poly(etheretherketone) implants with osteogenic growth peptide (OGP) to improve osteogenesis activity. RSC Adv. 2020, 10, 9777–9785.
54. Ding, Y.; Zhang, H.; Wang, X.; Zu, H.; Wang, C.; Dong, D.; Lyu, M.; Wang, S. Immobilization of Dextranase on Nano-Hydroxyapatite as a Recyclable Catalyst. Materials 2020, 14, 130.
55. Roopavath, U.K.; Sah, M.K.; Panigrahi, B.B.; Rath, S.N. Mechanochemically synthesized phase stable and biocompatible β-tricalcium phosphate from avian eggshell for the development of tissue ingrowth system. Ceram. Int. 2019, 45, 12910–12919.
56. Agha, A.; Parker, S.; Patel, M. Polymerization shrinkage kinetics and degree of conversion of commercial and experimental resin modified glass ionomer luting cements (RMGICs). Dent. Mater. 2020, 36, 893–904.
57. Pérez-Mondragón, A.A.; Cuevas-Suárez, C.E.; González-López, J.A.; Trejo-Carbajal, N.; Herrera-González, A.M. Evaluation of new coinitiators of camphorquinone useful in the radical photopolymerization of dental monomers. J. Photochem. Photobiol. A Chem. 2020, 403, 112844.
58. Alotaibi, J.; Saji, S.; Swain, M.V. FTIR characterization of the setting reaction of biodentineTM. Dent. Mater. 2018, 34, 1645–1651
59. Dinesh Kumar, S.; Mohamed Abudhahir, K.; Selvamurugan, N.; Vimalraj, S.; Murugesan, R.; Srinivasan, N.; Moorthi, A. Formulation and biological actions of nano-bioglass ceramic particles doped with Calcarea phosphorica for bone tissue engineering. Mater. Sci. Eng. C 2018, 83, 202–209.
60. Alqahtani, M. Effect of hexagonal boron nitride nanopowder reinforcement and mixing methods on physical and mechanical properties of self-cured PMMA for dental applications. Materials 2020, 13, 2323.
61. Khan, A.S.; Khalid, H.; Sarfraz, Z.; Khan, M.; Iqbal, J.; Muhammad, N.; Fareed, M.A.; Rehman, I.U. Vibrational spectroscopy of selective dental restorative materials. Appl. Spectrosc. Rev. 2017, 52, 507–540