Фрагмент для ознакомления
2
В исследованиях, посвященных проблемам обучения математике в школе, в настоящее время особое внимание уделяется вопросам развития мышления детей. Мышление - это обобщенное отражение действительности, поэтому проблема обобщений, понятий, значений, знаний - одна из классических проблем психологии. Одним из оснований, по которому выделяют виды мышления, является тип соответствующего обобщения. В связи с большим значением для психологических и педагогических исследований особое внимание уделяется эмпирическому и теоретическому типам обобщения и соответствующим им видам мышления. Обобщение, в процессе осуществления которого обнаруживаются закономерности, необходимые взаимосвязи особенных и единичных явлений с общей основой некоторого целого, открывается закон становления внутреннего единства этого целого, есть теоретическое обобщение. При этом обобщение здесь достигается не путем простого сопоставления признаков у отдельных объектов, а путем анализа сущности изучаемых предметов и явлений. Эмпирический путь обобщения - путь постепенного обобщения материала с варьированием многообразия частных случаев.
Структура мыслительной деятельности в понимании М. П. Михневича представляет собой совокупность мотивационного (наличие познавательных мотивов), содержательного (наличие знаний и степень овладения ими), процессуального (овладение учебными навыками) и эмоциональных (наличие положительного эмоционального фона) компонентов [8].
Для оценки мыслительной деятельности в процессе обучения учитываются и качество знаний (успеваемость), и задаваемые вопросы ученика к учителю, а так же характер этих вопросов, связанных с дополнительными учебными задачами и другие. Все эти особенности легко фиксируются, и учитель может своевременно определять уровень сформированности познавательной активности у учеников.
Ведущей характеристикой мыслительной деятельностиь является уровень ее развития. В психолого-педагогической литературе чаще всего выделяют два ее уровня: репродуктивную (воспроизводящую) и продуктивную (творческую). В некоторых работах они выделяются тремя и более. Нет четкого разделения деятельности на репродуктивную и творческую.
Мыслительная деятельность - сильное средство обучения. Уметь увидеть, подметить у ученика даже небольшую искорку интереса к какой-либо стороне учебной деятельности, организовывать необходимые условия, чтобы разжечь ее и превратить в истинный интерес к науке, к знаниям - в этом задача учителя, формирующего познавательную активность [12].
Непосредственно показательными признаками мыслительной деятельностиь можно назвать стабильность, прилежание, осознанность учения, творческие проявления, поведение в нестандартных учебных ситуациях, самостоятельность при решении учебных задач и т.д. Уровень включенности в учебную деятельность и проявление активности обучающегося - это динамический, изменяющийся показатель. Учитель в силах помочь обучающемуся подняться с нулевого уровня на ситуативно-активный, а с него на активно-исполнительский. И во многом от педагога зависит, дойдет ли воспитанник до творческого уровня.
Г.И. Щукина выделяет репродуктивно-подражательную, поисково-исполнительскую и творческую активность, таким образом предлагая методическое основание для активизации мыслительной деятельность обучающихся. Здесь разделение уровней мыслительной деятельности соответствует из классификаций методов обучения. В первом идёт речь о репродуктивно-подражательной активности, где собственная активность ученика в учебной деятельности недостаточна; во втором - о поисково-исполнительской, при которой ученик самостоятельно пытается найти способы решения учебной задачи; и, наконец, в третьем - о творческой активности обучающихся, когда и учебная задача, и способы ее решения определяются самим учеником [4].
Из всего вышесказанного следует, что мыслительная деятельность — сложное личностное образование, которое складывается под влиянием самых разнообразных факторов: субъективных (любознательность, усидчивость, воля, мотивация, прилежание и т.д.), объективных (окружающие условия, личность учителя, приемы и методы преподавания).
Фрагмент для ознакомления
3
Список используемой литературы
1. Березина, Н. И. Коррекционно-развивающая работа в процессе обучения младших школьников математике / Н. И. Березина // Традиции и инновации в начальном образовании: материалы регион. науч.-практ. конф., Елец, 07 апр. 2017 г. : сборник. – Елец: Елец. гос. ун-т им. И. А. Бунина, 2017. – С. 38–41.
2. Воронина, Л. В. Развитие когнитивных способностей младших школьников при обучении математике / Л. В. Воронина, Т. В. Истомина // Педагогическое образование в России. – 2020. – № 2. – С. 119–126.
3. Гороховцева, Л. А. К вопросу обучения математическим понятиям в начальной школе / Л. А. Гороховцева // Начальная школа. – 2019. – № 11. – С. 45–47.
4. Грязнов Ю. П. Развитие мыслительной деятельностс учащихся / Ю. П. Грязнов, Л. А. Лисина, П. И.Самойленко. – 2012. – № 2. – С. 30–33.
5. Каирова, Л. А. Коррекционно-развивающие технологии в обучении математике: учебное пособие / Л. А. Каирова. – Барнаул : Алтайский гос. пед. ун-т, 2016. – 89 c.
6. Корецкая, И. А. Психология развития и возрастная психология : учебное пособие / И. А. Корецкая – М.: Евразийский открытый институт, 2011. 120с.
7. Лысенко, Е. М. Возрастная психология : краткий курс лекций для вузов / Е. М. Лысенко. – М.: Издательство ВЛАДОС-ПРЕСС, 2006. - 173 с.
8. Минхевич, М. П. Формирование познавательной активности учащихся в условиях дефференциации обучения / М. П. Михевич. – М.: Речь, 2015. – 169 с.
9. Назарова, В. Н. Развитие мыслительной деятельности младших школьников в учреждениях дополнительного образования [Текст] / В. Н. Назарова // Практические аспекты дошкольной и школьной педагогики. – 2016. – № 2. – С. 43-49.
10. Степаненко, Т. А. Проблемное обучение как один из ведущих методов обучения младших школьников в условиях реализации ФГОС НОО / Т. А. Степаненко // Проблемы теории и практики современной науки : материалы VII международной научно-практической конференции, Таганрог, 19 сентября 2016 года / ООО «НОУ «Вектор науки». – Таганрог: Издательство "Перо", 2016. – С. 71-74.
11. Царук, В. И. Особенности организации процесса обучения младших школьников на уроках математики / В. И. Царук, Л. Ф. Кравцова // Трибуна ученого. – 2020. – № 5. – С. 518–524.
12. Шамова, Т. А. Активизация учения школьников / Т. А. Шамова. – М.: Педагогика, 1982 г – 207 с.