Фрагмент для ознакомления
2
1. Характеристика структурных элементов растительной клетки, их функциональное назначение.
Клетка представляет собой основную структурную и функциональную единицу всех живых существ и обладает всеми признаками живого: ростом, обменом веществ и энергией с окружающей средой, делением, раздражимостью, наследственностью и др. Среди растений есть виды, представленные одной клеткой (некоторые виды водорослей), однако большинство является многоклеточными организмами. Строение клеток разнообразно и зависит от выполняемых ими функций.
По степени сложности внутренней организации клетки можно разделить на 2 типа: прокариотические и эукариотические. У прокариотов, в отличие от эукариотов, нет оформленного ядра, хромосом, пластид, митохондрий, эндоплазматического ретикулума, аппарата Гольджи, отсутствуют митоз и типичный половой процесс. Некоторые бактерии являются анаэробами.
К эукариотическим организмам, наряду с животными и грибами, относятся и растения. Они обладают сходным строением клеток, что связано с единым происхождением. К важнейшим отличительным признакам растительной клетки, возникшим в результате приспособления к автотрофному питанию, относятся следующие: жесткая углеводная оболочка; пластиды; центральная вакуоль; плазмодесмы; основное вещество запаса – крахмал.
В типичном случае растительная клетка состоит из протопласта (живого содержимого) и окружающей его оболочки – клеточной стенки. Общий план строения растительной клетки приведен на рис. 1.
Протопласт можно подразделить на цитоплазму и ядро. Цитоплазма состоит из гиалоплазмы и органелл. Гиалоплазма представляет собой непрерывную водную коллоидную фазу клетки и обладает определенной вязкостью. Она способна к активному движению за счет трансформации химической энергии в механическую. Гиалоплазма связывает все находящиеся в ней органеллы, обеспечивая их постоянное взаимодействие. Через нее идет транспорт аминокислот, жирных кислот, нуклеотидов, сахаров, неорганических ионов, перенос АТФ.
Органеллы – это структурно-функциональные единицы цитоплазмы. В клетке выделяют три типа органелл: немембранные, одномембранные и двумембранные. Рассмотрим строение органелл, присущих растительным клеткам.
2. Пластиды и их характеристика.
Пластиды встречаются только в растительных клетках. Выделяют три типа пластид (хлоро–, лейко– и хромопласты), которые отличаются друг от друга составом пигментов (цветом), строением и выполняемыми
функциями.
Хлоропласты имеют зеленый цвет и встречаются во всех зеленых органах растения (листьях, стеблях, незрелых плодах). Они содержат зеленый пигмент хлорофилл, который находится в хлоропластах в нескольких формах. Кроме хлорофилла в них содержатся пигменты, относящиеся к группе каротиноидов, в частности желтый (ксантофилл) и оранжевый (каротин), но обычно они маскируются хлорофиллом.
Хлоропласты, как правило, имеют линзовидную форму и сложное строение. Снаружи они ограничены оболочкой, состоящей из двух мембран.
У хлоропластов, особенно высших растений, значительно развиты внутренние мембранные поверхности, имеющие форму плоских мешочков, называемых тилакоидами (ламеллами). На их мембранах находится хлорофилл. Тилакоиды могут располагаться одиночно, но чаще собраны в стопочки – граны. Внутренняя среда пластид называется стромой. В строме хлоропластов всегда встречаются пластоглобулы – включения жирных масел, в которых растворены каротиноиды, а также рибосомы, светлые зоны с нитями ДНК, а в некоторых случаях – крахмальные зерна, белковые кристаллы. Основная функция хлоропластов – фотосинтез. Кроме того, в них, как и в митохондриях, происходит процесс образования АТФ из АДФ, который называется фотофосфорилированием. Хлоропласты способны также к синтезу и разрушению полисахаридов (крахмала), некоторых липидов, аминокислот, собственного белка.
Лейкопласты – бесцветные мелкие пластиды, встречающиеся в запасающих органах растений (клубнях, корневищах, семенах и т. д.). Для лейкопластов характерно слабое развитие внутренней системы мембран, представленной одиночными тилакоидами, иногда трубочками и пузырьками. Остальные компоненты лейкопластов (оболочка, строма, рибосомы, ДНК, пластоглобулы) сходны с описанными для хлоропластов. Основная функция лейкопластов – синтез и накопление запасных питательных веществ, в первую очередь крахмала, иногда белков. Лейкопласты, накапливающие крахмал, называют амилопластами, белок – протеопластами, жирные масла – олеопластами.
Пластиды, окрашенные в желтый, оранжевый, красный цвета, носят название хромопластов. Их можно встретить в лепестках (лютик, одуванчик, тюльпан), корнеплодах (морковь), зрелых плодах (томат, роза, рябина, хурма) и осенних листьях. Яркий цвет хромопластов обусловлен наличием каротиноидов, растворенных в пластоглобулах. Внутренняя система мембран в данном типе пластид, как правило, отсутствует. Хромопласты имеют косвенное биологическое значение: яркая окраска лепестков и плодов привлекает опылителей и распространителей плодов.
В молодых, меристематических клетках имеются пропластиды – органеллы, окруженные двумя мембранами и способные передвигаться подобно амебам. В онтогенезе, в зависимости от типа ткани и условий среды пропластиды могут развиваться в хлоропласты (на свету) или лейкопласты (чаще – без света, за исключением лейкопластов в эпидермисе), см. рис.2.
3. Вакуоль и ее функции
Вакуоли содержатся почти во всех растительных клетках. Они представляют собой полости, заполненные клеточным соком и ограниченные от цитоплазмы мембраной – тонопластом. Для большинства зрелых клеток растений характерна центральная вакуоль. Клеточный сок, содержащийся в вакуоли, представляет собой водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта. В его состав могут входить углеводы (сахара и полисахариды), белки, органические кислоты и их соли, минеральные ионы, алкалоиды, гликозиды, танины и другие растворимые в воде соединения.
Вакуоли в растительных клетках выполняют две основные функции: накопление запасных веществ, отходов и поддержание тургора. На второй функции остановимся подробнее. Концентрация ионов и сахаров в клеточном соке вакуоли, как правило, выше, чем в оболочке клетки. Поэтому при достаточном насыщении оболочки водой последняя будет поступать в вакуоль путем диффузии. Такой однонаправленный транспорт воды через полупроницаемую мембрану носит название «осмос». Поступающая в клеточный
сок вода оказывает давление на постенный протопласт, а через него – на оболочку, вызывая напряженное, упругое ее состояние, или тургор. Он дает сочным органам растения форму и положение в пространстве и является одним из факторов роста клетки.
Если клетку поместить в гипертонический раствор осмотически активного вещества (NaCl, KNO3, сахарозы), т. е. в раствор с большей концентрацией, чем концентрация клеточного сока, то начнется осмотический выход воды из вакуоли. В результате этого объем ее сократится, протопласт отойдет от оболочки по направлению к центру клетки, тургор исчезнет. Это явление обратимо и носит название «плазмолиз».
4. Строение клеточной оболочки.
Клеточная оболочка – структурное образование на периферии клетки, придающее ей прочность, сохраняющее ее форму и защищающее протопласт. Оболочка, как правило, бесцветна и прозрачна, легко пропускает солнечный свет. По ней могут передвигаться вода и растворенные низкомолекулярные вещества. Оболочки соседних клеток соединены пектиновыми веществами, образующими срединную пластинку.
Скелетным веществом оболочки клеток высших растений является целлюлоза. Молекулы целлюлозы, представляющие собой очень длинные цепи, собраны по нескольку десятков в группы – микрофибриллы. В них молекулы располагаются параллельно друг другу и связаны многочисленными водородными связями. Они обладают эластичностью, высокой прочностью и создают структурный каркас оболочки, а также погружены в ее аморфный матрикс, состоящий в основном из гемицеллюлоз и пектиновых веществ.
Молекулы матричных полисахаридов значительно короче молекул целлюлозы. Их цепи располагаются в оболочке достаточно упорядоченно и образуют многочисленные поперечные (ковалентные и водородные) связи как друг с другом, так и с целлюлозными микрофибриллами. Эти связи значительно повышают прочность клеточной оболочки. В зависимости от типа ткани, в состав которой входит клетка, в матриксе оболочки могут быть и другие органические (лигнин, кутин, суберин, воск) и неорганические (кремнезем, оксалат кальция) вещества.
В образовании структурных элементов клеточной оболочки принимают участие плазмалемма, аппарат Гольджи и микротрубочки. На плазмалемме происходит синтез микрофибрилл целлюлозы, а микротрубочки способствуют их ориентации. Аппарат Гольджи выполняет функцию образования
веществ матрикса оболочки, в частности гемицеллюлоз и пектиновых веществ.
Различают первичную и вторичную клеточные оболочки. Меристематические и молодые растущие клетки, реже клетки постоянных тканей, имеют первичную оболочку, тонкую, богатую пектином и гемицеллюлозой.
Вторичная клеточная оболочка образуется по достижении клеткой окончательного размера и накладывается слоями на первичную со стороны протопласта. Она обычно трехслойная, с большим содержанием целлюлозы.
Плазмодесмы присущи только растительным клеткам. Они представляют собой тонкие цитоплазматические тяжи, соединяющие соседние клетки. В одной клетке может содержаться от нескольких сотен до десятков тысяч плазмодесм. Стенки канала плазмодесмы выстланы плазмалеммой. По центру канала проходит мембранный цилиндр – центральный стержень плазмодесмы, соединенный с мембраной ЭПР. Между центральным стержнем и плазмалеммой в канале находится гиалоплазма. Плазмодесмы выполняют функцию межклеточного транспорта веществ.
Порами называют неутолщенные места оболочки (углубления), на которых отсутствует вторичная оболочка. Они содержат тончайшие отверстия, через которые проходят плазмодесмы. По форме порового канала различают простые и окаймленные поры. У простых диаметр канала приблизительно одинаков на всем протяжении от полости клетки до первичной оболочки и канал имеет форму узкого цилиндра. У окаймленных канал суживается в процессе отложения вторичной оболочки; поэтому внутреннее отверстие поры, выходящее в полость клетки, значительно уже, чем наружное, упирающееся в первичную оболочку. В смежных клетках поры располагаются напротив друг друга. Это облегчает транспорт воды и растворенных веществ от клетки к клетке. Общие поры имеют вид канала, разделенного перегородкой из срединной пластинки и первичными оболочками.
5.Цитоплазматические включения в растительной клетке.
Включения – это локальная концентрация некоторых продуктов обмена в определенных местах клетки.
Крахмальные зерна образуются только в строме пластид живых клеток. В хлоропластах на свету откладываются зерна ассимиляционного (первичного) крахмала. Значительно большего объема достигают зерна запасного (вторичного) крахмала, откладывающиеся в лейкопластах (амилопластах).
Различают простые, полусложные и сложные зерна.
Липидные капли накапливаются в гиалоплазме. Наиболее богаты ими семена и плоды, где они могут быть преобладающим по объему компонентом протопласта.
Запасные белки чаще всего откладываются в вакуолях в виде зерен округлой или овальной формы, бывают простыми и сложными (кристаллиты, глобоиды).
Кристаллы оксалата кальция – конечные продукты обмена; откладываются обычно в вакуолях. По форме различают одиночные кристаллы, друзы (шаровидные образования, состоящие из многих мелких сросшихся кристаллов), рафиды (мелкие игольчатые кристаллы, собранные в пучки), кристаллический песок.
6. Строение и функции ядра
Ядро представляет собой обязательный органоид живой клетки. Оно всегда располагается в цитоплазме. В молодой клетке ядро обычно занимает центральное положение. Иногда оно остается в центре клетки, и окружено цитоплазмой (т. н. ядерный кармашек), которая связана с постенным слоем тонкими тяжами.
Ядро отделено от цитоплазмы двумембранной ядерной оболочкой, пронизанной многочисленными порами. Содержимое интерфазного (неделящегося) ядра составляют нуклеоплазма и погруженные в нее оформленные элементы – ядрышки и хроматин.
Ядрышки – сферические, довольно плотные тельца, состоящие из рибосомальной РНК, белков и небольшого количества ДНК. Их основная функция – синтез р-РНК и образование рибонуклеопротеидов (рРНК+белок), т. е. предшественников рибосом. Предрибосомы из ядрышка попадают в нуклеоплазму и через поры в ядерной оболочке переходят в цитоплазму, где и заканчивается их формирование.
Хроматин содержит почти всю ДНК ядра. В интерфазном ядре он имеет вид длинных тонких нитей, представляющих собой двойную спираль ДНК, закрученную в виде рыхлых спиралей более высокого порядка (суперспиралей). ДНК связана с белками-гистонами, располагающимися подобно бусинкам на ее нити. Хроматин, будучи местом синтеза различных РНК (транскрипции), представляет собой особое состояние хромосом, выявляющихся при делении ядра. Можно сказать, что хроматин – это функционирующая, активная форма хромосом. Дело в том, что в интерфазном ядре хромосомы сильно разрыхлены и имеют большую активную поверхность.
Такое диффузное распределение генетического материала наилучшим образом соответствует контролирующей роли хромосом в обмене веществ клетки. Следовательно, хромосомы присутствуют в ядре всегда, но в интерфазной клетке не видны, потому что находятся в деконденсированном (разрыхленном) состоянии.